scholarly journals FOXE1 represses cell proliferation and Warburg effect by inhibiting HK2 in colorectal cancer

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Weixing Dai ◽  
Xianke Meng ◽  
Shaobo Mo ◽  
Wenqiang Xiang ◽  
Ye Xu ◽  
...  

Abstract Background Low expression of FOXE1, a member of Forkhead box (FOX) transcription factor family that plays vital roles in cancers, contributes to poor prognosis of colorectal cancer (CRC) patients. However, the underlying mechanism remains unclear. Materials and methods The effects of FOXE1 on the growth of colon cancer cells and the expression of glycolytic enzymes were investigated in vitro and in vivo. Molecular biological experiments were used to reveal the underlying mechanisms of altered aerobic glycolysis. CRC tissue specimens were used to determine the clinical association of ectopic metabolism caused by dysregulated FOXE1. Results FOXE1 is highly expressed in normal colon tissues compared with cancer tissues and low expression of FOXE1 is significantly associated with poor prognosis of CRC patients. Silencing FOXE1 in CRC cell lines dramatically enhanced cell proliferation and colony formation and promoted glucose consumption and lactate production, while enforced expression of FOXE1 manifested the opposite effects. Mechanistically, FOXE1 bound directly to the promoter region of HK2 and negatively regulated its transcription. Furthermore, the expression of FOXE1 in CRC tissues was negatively correlated with that of HK2. Conclusion FOXE1 functions as a critical tumor suppressor in regulating tumor growth and glycolysis via suppressing HK2 in CRC.

2021 ◽  
Author(s):  
Yunxin Zhang ◽  
Kexin Shen ◽  
Hanyi Zha ◽  
Wentao Zhang ◽  
Haishan Zhang

Abstract BackgroundCircular RNA-BTG3 associated nuclear protein (circ-BANP) was identifified to involve in cell proliferation of colorectal cancer (CRC). The aerobic glycolysis is a key metabolism mediating cancer progression. However, the role of circ-BANP on aerobic glycolysis in CRC remains unknown. MethodsThe expression of circ-BANP, microRNA (miR)-874-3p, and mitogen-activated protein kinase 1 (MAPK1) mNRA was detected using quantitative real-time polymerase chain reaction. Cell viability and invasion were measured by cell counting kit-8 assay or transwell assay. Glucose consumption and lactate production were assessed by a glucose and lactate assay kit. XF Extracellular Flux Analyzer was used to determine extracellular acidifification rate (ECAR). Western blot was used to analyze the levels of hexokinase-2 (HK2), pyruvate kinase M2 (PKM2), MAPK1, proliferating cell nuclear antigen (PCNA), Cyclin D1, N-cadherin, E-cadherin, hypoxia inducible factor-1α (HIF-1α), glucose transport protein 1(GLUT1), and c-Myc. The interaction between miR-874-3p and circ-BANP or MAPK1 was confifirmed by dual luciferase reporter assay. In vivo experiments were conducted through the murine xenograft model. ResultsCirc-BANP was up-regulated in CRC tissues and cell lines. Circ-BANP knockdown suppressed CRC cell proliferation, invasion and aerobic glycolysis in vitro as well as inhibited tumor growth in vivo. Circ-BANP was a sponge of miR-874-3p and performed anti-tumor effffects by binding to miR-874-3p in CRC cells. Subsequently, we confifirmed MAPK1 was a target of miR-874-3p and circ-BANP indirectly regulated MAPK1 expression by sponging miR-874-3p. After that, we found MAPK1 overexpression partially reversed circ-BANP deletion-mediated inhibition on cell carcinogenesis and aerobic glycolysis in CRC. ConclusionCirc-BANP accelerated cell carcinogenesis and aerobic glycolysis by regulating MAPK1 through miR- 874-3p in CRC, suggesting a promising therapeutic strategy for CRC treatment.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15123-e15123
Author(s):  
Dawei Li ◽  
Qingguo Li ◽  
Sanjun Cai ◽  
Keping Xie

e15123 Background: Aberrant expression of Forkhead Box transcription factors plays vital roles in the oncogenesis and metastasis of many types of cancer. The purpose of this study is to elucidate the function of Forkhead Box C1(FOXC1) in colorectal cancer (CRC)malignancy maintenance. Methods: FOXC1 expression in CRC specimens was analyzed in the TCGA database and validated by immunohistochemistry using a tissue microarray (TMA). The effect of FOXC1 expression on cancer proliferation and glycolysis was assessed in cells by altering the expression of FOXC1 in vitro and in vivo. Mechanistic investigation was carried out by using cell and molecular biology approaches. Results: FOXC1 was found to be overexpressed in CRC specimens compared with that in the adjacent benign tissues. Univariate survival analyses of the TCGA and validated cohorts showed that high expression of FOXC1 was significantly correlated with shortened patient survival ( P< 0.05). Attenuation of FOXC1 expression inhibited proliferation, clone formation and decreased glucose consumption and lactate production. By contrast, overexpression of FOXC1 had the opposite effect. Furthermore, increased FOXC1 expression downregulated the expression of a key glycolytic enzyme,fructose-1, 6-Bisphosphatase 1 (FBP1). Mechanistically, FOXC1 bound directly to the promoter regions of the FBP1 gene and negatively regulated its transcriptional activity. Aberrant FBP1 expression contributes to CRC tumorigenicity, and decreased FBP1 coupled with increased FOXC1 provided better prognostic information than FOXC1 did alone. Conclusions: The FOXC1/FBP1 axis induces cell proliferation, reprograms the metabolic process in CRC and provides potential prognostic predictors and therapeutic targets for patients with CRC.


Author(s):  
Zhenglei Xu ◽  
Dingguo Zhang ◽  
Zhuliang Zhang ◽  
Weixiang Luo ◽  
Ruiyue Shi ◽  
...  

Background: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play vital regulatory roles in pancreatic cancer (PC) initiation and progression. We aimed to explore the biological functions and underlying mechanisms of miR-505-3p (miR-505) in PC.Methods: We first screened miRNA expression profiles using microarray in PC tissues and normal tissues, and then studied the function and underlying mechanism of miR-505. Moreover, we evaluated the regulatory effect of lncRNA LINC01448 on miR-505.Results: We demonstrated miR-505 that was significantly downregulated in PC tissues. We further revealed that miR-505 significantly inhibited cell proliferation, invasion, sphere formation, glucose consumption, and lactate production by targeting HK2. In addition, overexpression of miR-505 led to tumor growth inhibition in vivo, demonstrating that it acts as a tumor suppressor in PC. LINC01448 was identified as an oncogenic lncRNA that could reduce miR-505 expression. Subsequent studies confirmed that LINC01448 enhanced cell proliferation, invasion, sphere formation, glucose consumption, and lactate production by regulating the miR-505/HK2 pathway.Conclusions: These findings demonstrated that miR-505, suppressed by LINC01448, could function as a key tumor suppressor by targeting HK2 in PC, elucidating an important role of the LINC01448/miR-505/HK2 pathway in regulating PC glycolysis and progression.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Linfei Huang ◽  
Lei Zhu ◽  
Sheng Pan ◽  
Jing Xu ◽  
Miao Xie ◽  
...  

Abstract Background Circular RNA 0029803 (circ_0029803) was found to be upregulated in colorectal cancer (CRC) tissues, but its function and underlying molecular mechanism are not studied in CRC. Methods The expression levels of circ_0029803, microRNA-216b-5p (miR-216b-5p), and ski-oncogene-like (SKIL) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RNase R treatment was used to affirm the existence of circ_0029803. Cell proliferation, apoptosis, migration, and invasion were assessed by colony formation, flow cytometry, and Transwell assays, respectively. A glucose and lactate assay kit was used to detect glucose consumption and lactate production. Western blot was applied to analyze the levels of all proteins. Dual-luciferase reporter assay was performed to assess the relationship between miR-216b-5p and circ_0029803 or SKIL. Tumor xenograft models were established to elucidate the effect of circ_0029803 in vivo. Results Circ_0029803 expression was enhanced in CRC tissues and cells, and the 5-year overall survival rate of patients with high circ_0029803 expression was substantially reduced. Circ_0029803 depletion retarded proliferation, migration, invasion, EMT and glycolysis of CRC cells in vitro as well as the tumor growth in vivo. Mechanically, circ_0029803 could serve as miR-216b-5p sponge to regulate its expression, and miR-216b-5p knockdown reversed the inhibition of si-circ_0029803 on the malignant behaviors of CRC cells. Additionally, as the target mRNA of miR-216b-5p, SKIL could counteract the inhibitory effect of miR-216b-5p on the development of CRC cells. Importantly, silencing circ_0029803 reduced SKIL expression via sponging miR-216b-5p. Conclusion Circ_0029803 knockdown hindered proliferation, migration, invasion, EMT, and glycolysis and promoted apoptosis in CRC cells by modulating the miR-216b-5p/SKIL axis.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 591-591
Author(s):  
Haoyu Li ◽  
Wenqiao Wang ◽  
Pan Zhuang ◽  
Jingjing Jiao ◽  
Yu Zhang

Abstract Objectives The aim of this study was to investigate the effects of DHA and EPA on glucose metabolism including glucose uptake and disposal in skeletal muscle and C2C12 myotubes. Methods Four-week-old db/db diabetic mice were fed with control diet enriched with DHA/EPA (purity &gt; 99%,  1% wt/wt) for 10 weeks. To further explore the underlying mechanism, C2C12 myotubes were induced insulin resistance by palmitate and treated with 25 and 50 μM DHA/EPA for 24 h after differentiation. Results The untargeted metabolome of skeletal muscle showed BCAAs and other metabolites associated with glycolysis and TCA cycle were altered by DHA/EPA treatment. Further detections revealed DHA/EPA treatment promoted the translocation of GLUT4 via increasing Rab8a and SNAP23 expression, and enhanced the activity of GS and PDH. In vitro, the glucose consumption was improved coupled with promoted Rab8a or SNAP23, and GS and PDH were also activated under DHA/EPA intervention increased glucose consumption via promoted Rab8a and SNAP23. The GS and PDH were also activated, which were in line with the results in vivo. Conclusions Long-term intake of DHA and EPA may have a protective effect on diabetes through promoted GLUT4 translocation, glycogen synthesis and aerobic glycolysis in skeletal muscle. Funding Sources This work was supported by the National Natural Science Foundation of China (grant number 81773419 and 81300309), Chinese Institute of Nutrition DSM Research Fund (grant number CNS-DSM-2017–035), China National Program for Support of Top-notch Young Professionals and China Postdoctoral Science Foundation (grant number 2020M681869).


Author(s):  
You Yu ◽  
Xiao Lei

Circular RNAs (circRNAs) are implicated in various human cancers, including colorectal cancer (CRC). The objective of this study was to investigate the function and regulatory mechanism of a novel circRNA, circFAM120B, in CRC development. The expression of circFAM120B, miR-645 and TGF-beta receptor II (TGFBR2) mRNA was detected by quantitative real-time polymerase chain reaction. Cellular biological functions, including cell proliferation, migration/invasion, and glycolysis metabolism, were assessed using CCK-8 assay, colony formation assay, transwell assay, and glycolysis stress test, respectively. Glycolysis progression was also monitored by lactate production and glucose consumption. The expression of glycolysis-related markers and TGFBR2 at the protein level was detected by western blot. The interaction between miR-645 and circFAM120B or TGFBR2 was predicted by bioinformatics analysis and verified by pull-down assay, dual-luciferase reporter assay and RIP assay. In vivo animal experiments were performed to further explore the function of circFAM120B. The expression of circFAM120B was decreased in CRC tissues and cells. CircFAM120B overexpression blocked CRC cell proliferation, migration/invasion, and glycolysis metabolism. MiR-645 was a target of circFAM120B, and miR-645 restoration reversed the effects of circFAM120B overexpression. In addition, TGFBR2 was a target of miR-645, and miR-645 inhibition-suppressed CRC cell proliferation, migration/invasion and glycolysis were restored by TGFBR2 knockdown. Moreover, circFAM120B activated the expression of TGFBR2 by targeting miR-645. TGFBR2 also blocked tumor growth in vivo by targeting the miR-645/TGFBR2 axis. CircFAM120B inhibited CRC progression partly by mediating the miR-645/TGFBR2 network, which explained the potential mechanism of circFAM120B function in CRC.


Author(s):  
Zhandong Zhang ◽  
Wei Yang ◽  
Ning Li ◽  
Xiaobin Chen ◽  
Fei Ma ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) regulate a series of biological processes, and their anomalous expression exerts critical roles in progression of multiple malignancies, including colorectal cancer (CRC). The present study was designed to provide new ideas and perspectives for the role of lncRNA MCF2L-AS1 and disclose the underlying mechanism in CRC. Herein, we observed that MCF2L-AS1 expression was enriched in CRC tissues and cell lines. Additionally, silencing of MCF2L-AS1 dramatically impeded cell proliferation, invasion and migration capacities of CRC, and distinctly attenuated the expression of invasion associated targets MMP-2 and MMP-9. Moreover, depletion of MCF2L-AS1 apparently restricted the glucose consumption and lactate production, and downregulated GLUT1 and LDHA expression. More importantly, we predicted and verified that MCF2L-AS1 acted as a molecular sponge for miR-874-3p and inversely regulated miR-874-3p expression. Interesting, FOXM1 was identified as direct target of miR-874-3p, and positively modulated by MCF2L-AS1 through sponging miR-874-3p. Mechanistically, MCF2L-AS1 accelerated cell proliferation, invasion and glycolysis through competitively binding to miR-874-3p, leading to enhance FOXM1 expression. Collectively, these outcomes highlighted that MCF2L-AS1 acted as a motivator by modulating the miR-874-3p/FOXM1 axis, thereby aggravating tumorigenesis and glycolysis progress of CRC, disclosing that MCF2L-AS1 may serve as a valuable and promising therapeutic strategy for CRC.


2015 ◽  
Vol 112 (35) ◽  
pp. 11090-11095 ◽  
Author(s):  
Rodrigo Lerchundi ◽  
Ignacio Fernández-Moncada ◽  
Yasna Contreras-Baeza ◽  
Tamara Sotelo-Hitschfeld ◽  
Philipp Mächler ◽  
...  

Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Rui Yang ◽  
Mei Wang ◽  
Guanghui Zhang ◽  
Yanping Li ◽  
Lulin Wang ◽  
...  

AbstractThe POU Class Homeobox 2 (POU2F2) is a member of POU transcription factors family, which involves in cell immune response by regulating B cell proliferation and differentiation genes. Recent studies have shown that POU2F2 acts as tumor-promoting roles in some cancers, but the underlying mechanism remains little known. Here, we identified that the highly expressed POU2F2 significantly correlated with poor prognosis of glioblastoma (GBM) patients. POU2F2 promoted cell proliferation and regulated glycolytic reprogramming. Mechanistically, the AKT/mTOR signaling pathway played important roles in the regulation of POU2F2-mediated aerobic glycolysis and cell growth. Furthermore, we demonstrated that POU2F2 activated the transcription of PDPK1 by directly binding to its promoter. Reconstituted the expression of PDPK1 in POU2F2-knockdown GBM cells reactivated AKT/mTOR pathway and recovered cell glycolysis and proliferation, whereas this effect was abolished by the PDPK1/AKT interaction inhibitor. In addition, we showed that POU2F2-PDPK1 axis promoted tumorigenesis by regulating glycolysis in vivo. In conclusion, our findings indicate that POU2F2 leads a metabolic shift towards aerobic glycolysis and promotes GBM progression in PDPK1-dependent activation of PI3K/AKT/mTOR pathway.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


Sign in / Sign up

Export Citation Format

Share Document