scholarly journals The effect of citrus flavonoid extract supplementation on anaerobic capacity in moderately trained athletes: a randomized controlled trial

Author(s):  
Lieke E. van Iersel ◽  
Yala R. Stevens ◽  
Jose M. Conchillo ◽  
Freddy J. Troost

Abstract Background Nutritional supplementation is commonly used by athletes to improve their exercise performance. Previous studies demonstrated that citrus flavonoid extract (CFE) supplementation may be an effective strategy to improve exercise performance in male athletes. Yet, no conclusive research has been performed to investigate the effect of chronic CFE supplementation on high-intensity exercise performance under anaerobic conditions. Therefore, the aim of the study was to assess whether CFE supplementation in daily dosages of 400 and 500 mg for a period of 4 and 8 weeks improves anaerobic exercise capacity. Methods A randomized, double-blind, placebo controlled, parallel clinical study was conducted in 92 moderately trained healthy men and women. Subjects were randomized to receive 400 mg of CFE (n = 30), 500 mg of CFE (n = 31) or placebo (n = 31) daily, for 8 consecutive weeks. The Wingate anaerobic test was used to assess anaerobic exercise capacity and power output at baseline, after 4 weeks and after 8 weeks. Results After 4 weeks supplementation, average power output significantly increased in the 400 mg group (Estimated difference [ED] = 38.2 W [18.0, 58.3]; p < 0.001; effect size [ES] = 0.27) and in the 500 mg group (ED = 21.2 W [0.91, 41.4]; p = 0.041; ES = 0.15) compared to placebo. The 5 s peak power output was also increased in the 400 mg group (ED = 53.6 [9.96, 97.2]; p = 0.017; ES = 0.25) after 4 weeks compared to placebo. After 8 weeks of supplementation, average power output was significantly improved in the group receiving 400 mg of CFE (ED = 31.6 [8.33, 54.8]; p = 0.008; ES = 0.22) compared to placebo. Conclusion These results demonstrate that CFE supplementation improved anaerobic capacity and peak power during high intensity exercise in moderately trained individuals. Further research is needed to identify the underlying mechanisms that are affected by CFE supplementation. Trial registration ClinicalTrials.gov (NCT03044444). Registered 7 February 2017

Author(s):  
R.B. Kreider ◽  
C. Melton ◽  
M. Greenwood ◽  
C. Rasmussen ◽  
J. Lundberg ◽  
...  

Oral D-ribose supplementation has been reported to increase adenine nucle-otide synthesis and exercise capacity in certain clinical populations. Theoretically, increasing adenine nucleotide availability may enhance high intensity exercise capacity. This study evaluated the potential ergogenic value of D-ribose supplementation on repetitive high-intensity exercise capacity in 19 trained males. Subjects were familiarized to the testing protocol and performed two practice-testing trials before pre-supplementation testing. Each test involved warming up for 5 min on a cycle ergometer and then performing two 30-s Wingate anaerobic sprint tests on a computerized cycle ergometer separated by 3 min of rest recovery. In the pre- and post-supplementation trials, blood samples were obtained at rest, immediately following the first and second sprints, and following 5 min of recovery from exercise. Subjects were then matched according to body mass and anaerobic capacity and assigned to ingest, in a randomized and double blind manner, capsules containing either 5 g of a dextrose placebo (P) or D-ribose (R) twice daily (10 g/d) for 5 d. Subjects then performed post-supplementation tests on the 6th day. Data were analyzed by ANOVA for repeated measures. Results revealed a significant interaction (p = .04) in total work output. Post hoc analysis revealed that work significantly declined (–18 ± 51 J) during the second post-supplementation sprint in the P group while being maintained in the R group (–0.0 ± 31 J). No significant interactions were observed in peak power, average power, torque, fatigue index, lactate, ammonia, glucose, or uric acid. Results indicate that oral ribose supplementation (10 g/d for 5 d) does not affect anaerobic exercise capacity or metabolic markers in trained subjects as evaluated in this study.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1454.2-1455
Author(s):  
M. E. Acar ◽  
D. Bayraktar ◽  
S. Gucenmez ◽  
D. C. Saraç ◽  
N. Buker ◽  
...  

Background:Familial Mediterranean fever (FMF) is an auto-inflammatory disease commonly affects people from Mediterranean basin. It is characterized by acute self-limiting inflammatory attacks of serous membranes. The disease is commonly associated with musculoskeletal symptoms of lower extremities such as arthritis, exercise induced leg pain, as well as protracted febrile myalgia. The term of anaerobic exercise capacity describes the ability of performing quick and explosive tasks such as stair climbing and brisk walking. It is well known that anaerobic exercise capacity is closely related to functional status.Objectives:To assess the relationship between anaerobic exercise capacity and lower extremity functionality in patients with FMF.Methods:Twenty-eight FMF patients (57% female) were included in the study. Median age was 33.5 (IQR 25/75: 23.3/44.3) years, median body mass index was 24.3 (IQR 25/75: 21.0/27.8) kg/m2, median time since symptom onset was 20.0 (IQR 25/75: 11.5/24.5) years, median time since diagnosis was 10.0 (IQR 25/75: 3.75/17.5) years, and median colchicine dosage was 1.5 (IQR 25/75: 1.0/1.5) mg/day. Anaerobic exercise capacity was measured with Wingate Anaerobic Test by using a cycle ergometer. Peak power (watt/kg) and average power (watt/kg) were calculated. Stair climbing, standing from a chair, and walking were assessed by using 9-step stair climb test, 10-repetition chair stand test, and 6-minute walking distance, respectively. Spearman’s rank-order correlation test was used to analyse the relationships between anaerobic exercise capacity and lower extremity functional tests.Results:The results of the anaerobic exercise capacity and lower extremity functional test scores of patients with FMF were summarized in table 1. Moderate relationships were found between both peak and average anaerobic exercise capacities and lower extremity functional status tests (Table 1, p<0.05). Six-minute walking distance has the strongest association with both peak (rho: .672, p<0.001) and average (rho: .689, p<0.001) anaerobic exercise capacity.Table 1.Anaerobic exercise capacity scores and lower extremity functionality as well as the relationships between anaerobic capacity and functional tests in patient with familial Mediterranean fever.CharacteristicsMedian (IQR 25/75)(n:28)The correlation results, rho, p valuesPeak Power(watt/kg)Average Power (watt/kg)9-step stair climb test (seconds)5.7 (5.1/6.4)-.590*-.648*p:0.001p: 0.00110-repetition chair stand test (seconds)16.6 (13.7/18.7)-.493*-.476*p:0.008p:0.0106-minute walking distance (meters)594.1 (551.1/643.3).672*.689*p<0.001p<0.001Peak power (watt/kg)5.8 (4.1/7.9)Average power (watt/kg)4.6 (3.1/5.9)IQR 25/75: Interquartile range between 25th and 75th percentiles; kg: kilograms, *Spearman’s rank-order correlation test, p<0.05.Conclusion:According to our results, anaerobic exercise capacity is related to lower extremity functional status in patients with FMF. Improving anaerobic capacity by using optimal rehabilitation programs including speed and agility exercises may help to improve anaerobic exercise capacity, and consequently lower extremity functionality in those patients.Disclosure of Interests:None declared


1999 ◽  
Vol 13 (4) ◽  
pp. 444-457 ◽  
Author(s):  
Bonnie G. Berger ◽  
Robert W. Motl ◽  
Brian D. Butki ◽  
David T. Martin ◽  
John G. Wilkinson ◽  
...  

This study examined changes in mood and performance in response to high-intensity, short-duration overtraining and a subsequent taper. Pursuit cyclists (N = 8) at the United States Olympic Training Center completed the POMS and simulated 4-km pursuit performance tests throughout a six-week period. The six-week period included a baseline week, three weeks of overtraining that consisted primarily of high-intensity interval training, and a two-week taper. Total Mood Disturbance (TMD) scores displayed a quadratic polynomial effect across the three weeks of overtraining (p < .01), with the highest TMD scores occurring in the second week. Average TMD scores were lower during the taper than at baseline (p < .02) and lower at taper than overtraining (p < .0005). Cycling performance (pursuit time and average power output) improved during the three weeks of overtraining; additional improvements were observed during the taper. There were no significant correlations between TMD and performance. However, pursuit time, average power output, and mood disturbance scores were at optimal levels throughout the taper period. These findings suggest that high-intensity, short-duration overtraining may not result in an overtraining syndrome in 4-km pursuit cyclists.


2004 ◽  
Vol 14 (5) ◽  
pp. 541-549 ◽  
Author(s):  
Ben Desbrow ◽  
Sally Anderson ◽  
Jennifer Barrett ◽  
Elissa Rao ◽  
Mark Hargreaves

The effects of a commercial sports drink on performance in high-intensity cycling was investigated. Nine well-trained subjects were asked to complete a set amount of work as fast as possible (time trial) following 24 h of dietary (subjects were provided with food, energy 57.4 ± 2.4 kcal/kg and carbohydrate 9.1 ± 0.4 g/kg) and exercise control. During exercise, subjects were provided with 14 mL/kg of either 6% carbohydrate-electrolyte (CHO-E) solution or carbohydrate-free placebo (P). Results showed that subjects’ performances did not greatly improve (time, 62:34 ± 6:44 min:sec (CHO-E) vs. 62:40 ± 5:35 min:sec (P); average power output, 283.0 ± 25.0 W (CHO-E) vs. 282.9 ± 29.3 W (P), P > 0.05) while consuming the sports drink. It was concluded that CHO-E consumption throughout a 1-h time trial, following a pre-exercise dietary regimen designed to optimize glucose availability, did not improve time or power output to a greater degree than P in well-trained cyclists.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1288-1288
Author(s):  
Ahad Alharb ◽  
Naoyuki Ebine ◽  
Souya Ogawa ◽  
Satoshi Nakae ◽  
Tatsuya Hojo ◽  
...  

Abstract Objectives In this study we investigated the effects of hydrogen (H2) supplement, in the form of calcium bound H2 powder capsules, on aerobic and anaerobic cycling exercise. Methods Trained male subjects participated in a randomized, double-blind, crossover design trial and received H2-rich calcium powder (HCP) supplement (1500 mg/day, 2.544 μg/day of H2 gas) or H2-depleted placebo (PLA) (1500 mg/day) for 3 consecutive days. Aerobic experiment: Eighteen subjects carried out a cycling incremental exercise starting at 20 watts (W) work rate, and increasing by 20 W/2 minutes until exhaustion. Blood gases including pH, bicarbonate ion (HCO3−), partial pressures of CO2 (PCO2), metabolic profile including lactate (Lac), and electrolytes including chloride (Cl−) were measured at rest and at 120-, 200-, and 240-W work rates. Anaerobic experiment: Six subjects carried out a 30 second Wingate anaerobic exercise test (WAnT) bout with a resistive load of 7.5% of body mass. Lac was then measured at 1-, 3-, 5-, and 15-minutes following the WAnT exercise. Results Aerobic experiment: At rest, HCP had a significantly lower pH (P = 0.048), Cl− (P = 0.011), and a higher HCO3− (P = 0.041), PCO2 (P = 0.026) compared to the PLA group. During exercise, pH decrease (supplement effect: P = 0.043) and the HCO3− increase (supplement effect: P = 0.030) continued in the HCP group. Additionally, HCP did not affect peak work load and exercise duration. And no changes were noted in Lac at rest or during exercise. Anaerobic experiment: HCP did not affect peak power output or Lac recovery following WAnT. However the average power output during exercise was significantly higher in the HCP group (P = 0.019) compared to the PLA group. Conclusions HCP supplementation following 3 days of intake, slightly lowered pH during aerobic exercise, and increased average power output in the anaerobic WAnT exercise compared to the PLA group. HCP supplement might have an ergogenic effect in an anaerobic exercise setting. Funding Sources This study was supported by The Japan Society for the Promotion of Science, and the Ministry of Education, Science, and Culture of Japan. In addition, we received a research grant from the company ENAGEGATE Inc. and they provided the HCP supplement and placebo. However, no intercession, restrictions or agreements of any kind was imposed between parties regarding research design, results or publications.


Author(s):  
Noah M.A. d’Unienville ◽  
Maximillian J. Nelson ◽  
Clint R. Bellenger ◽  
Henry T. Blake ◽  
Jonathan D. Buckley

Purpose: To prescribe training loads to improve performance, one must know how an athlete is responding to loading. The maximal rate of heart-rate increase (rHRI) during the transition from rest to exercise is linearly related to changes in endurance exercise performance and can be used to infer how athletes are responding to changes in training load. Relationships between rHRI and anaerobic exercise performance have not been evaluated. The objective of this study was to evaluate relationships between rHRI and anaerobic exercise performance. Methods: Eighteen recreational strength and power athletes (13 male and 5 female) were tested on a cycle ergometer for rHRI, 6-second peak power output, anaerobic capacity (30-s average power), and blood lactate concentration prior to (PRE), and 1 (POST1) and 3 (POST3) hours after fatiguing high-intensity interval cycling. Results: Compared with PRE, rHRI was slower at POST1 (effect size [ES] = −0.38, P = .045) but not POST3 (ES = −0.36, P = .11). PPO was not changed at POST1 (ES = −0.12, P = .19) but reduced at POST3 (ES = −0.52, P = .01). Anaerobic capacity was reduced at POST1 (ES = −1.24, P < .001) and POST3 (ES = −0.83, P < .001), and blood lactate concentration was increased at POST1 (ES = 1.73, P < .001) but not at POST3 (ES = 0.75, P = .11). rHRI was positively related to PPO (B = 0.19, P = .03) and anaerobic capacity (B = 0.14, P = .005) and inversely related to blood lactate concentration (B = −0.22, P = .04). Conclusions: rHRI is linearly related to acute changes in anaerobic exercise performance and may indicate how athletes are responding to training to guide the application of training loads.


2018 ◽  
Vol 125 (2) ◽  
pp. 479-485
Author(s):  
Steven A. H. Ferguson ◽  
Neil D. Eves ◽  
Brian D. Roy ◽  
Gary J. Hodges ◽  
Stephen S. Cheung

This study examined self-paced, high-intensity exercise during mild hypothermia and whether hyperoxia might offset any potential impairment. Twelve trained males each completed 15-km time trials in three environmental conditions: Neutral (23°C, [Formula: see text] 0.21), Cold (0°C, [Formula: see text] 0.21), and Cold+Hyper (0°C, [Formula: see text] 0.40). Cold and Cold+Hyper trials occurred after a 0.5°C drop in rectal temperature. Rectal temperature was higher ( P ≤ 0.016) throughout Neutral compared with Cold and Cold+Hyper; Cold had a higher ( P ≤ 0.035) rectal temperature than Cold+Hyper from 2.5 to 7.5 km, and hyperoxia did not alter thermal sensation or comfort. Oxyhemoglobin saturation decreased from ~98% to ~94% with Neutral and Cold, but was maintained at ~99% in Cold+Hyper ( P < 0.01). Cerebral tissue oxygenation index (TOI) was higher in Neutral than in Cold throughout the time trial (TT) ( P ≤ 0.001), whereas Cold+Hyper were unchanged ( P ≥ 0.567) from Neutral by 2.5 km. Muscle TOI was maintained in Cold+Hyper compared with Neutral and was higher ( P ≤ 0.046) than Cold throughout the entire TT. Power output during Cold (246 ± 41 W) was lower than Neutral (260 ± 38 W) at all 2.5-km intervals ( P ≤ 0.012) except at 12.5 km. Power output during Cold+Hyper (256 ± 42 W) was unchanged ( P ≥ 0.161) from Neutral throughout the TT, and was higher than Cold from 7.5 km onward. Average cadence was higher in Neutral (93 ± 8 rpm) than in either Cold or Cold+Hyper (Cold: 89 ± 7 and Cold+Hyper: 90 ± 8 rpm, P = 0.031). In conclusion, mild hypothermia reduced self-paced exercise performance; hyperoxia during mild hypothermia restored performance to thermoneutral levels, likely due to maintenance of oxygen availability rather than any thermogenic benefit. NEW & NOTEWORTHY We examined self-paced, high-intensity exercise with 0.5°C rectal temperature decreases in a 0°C ambient environment, along with whether hyperoxia could offset any potential impairment. During a 15-km time trial, power output was lower with hypothermia than with thermoneutral. However, with hypothermia, hyperoxia of [Formula: see text] = 0.40 restored power output despite there being no thermophysiological improvement. Hypothermia impairs exercise performance, whereas hyperoxia likely restored performance due to maintenance of oxygen availability rather than any thermogenic benefit.


2008 ◽  
Vol 107 (2) ◽  
pp. 597-606
Author(s):  
Shunsuke Yamaji ◽  
Shinichi Demura ◽  
Hiroki Aoki ◽  
Kei Yamamoto

This study examined intermittent elbow flexion every 2 see. for 1 min. using various loads to study the properties of muscle power output and their relationship to peak power, defined as the maximum power output. 18 young men performed intermittent explosive elbow flexion (30 times × min.−1) using 30%, 40%, and 50% maximal voluntary contraction (MVC). The power outputs at 30% and 40% MVC slightly decreased (rate of decrease from peak power to average power output during the 26 to 30 contractions was about 5%). However, at 50% MVC, there was a marked decrease (33.6%). Power output for 8 contractions was significantly larger at 50% MVC than at 30% and 40% MVC, but after 9 contractions there was no significant difference between 40% and 50% MVC. In addition, after 27 contractions, 40% MVC was significantly larger than 30% and 50% MVC. That is, the tendency for power output to decrease differed among the various loads. The rate of decrease of power outputs showed no significant correlation with peak power for each load. Therefore, the rate of decrease or power output in intermittent contractions may help sustain the power output and cannot be evaluated as accurately as peak power.


2020 ◽  
Vol 45 (11) ◽  
pp. 1232-1237
Author(s):  
Rolf Nickel ◽  
Felipe Troncoso ◽  
Orlando Flores ◽  
Roberto Gonzalez-Bartholin ◽  
Karen Mackay ◽  
...  

We aimed to compare the cardiorespiratory, metabolic, and perceptual responses to high- and moderate-intensity eccentric cycling versus moderate-intensity concentric cycling in chronic obstructive pulmonary disease (COPD) patients. Ten patients with moderate COPD (forced expiratory volume in 1 s (FEV1) = 68.6% ± 20.4% of predicted; 68.3 ± 9.1 years) performed 30 min of moderate-intensity concentric (CONC-M: 50% maximum workload; Wmax), moderate-intensity eccentric (ECC-M: 50% Wmax), and high-intensity eccentric (ECC-H: 100% Wmax) cycling. Average power output, oxygen consumption (V̇O2), minute ventilation (VE), respiratory frequency (fR), oxygen saturation (SpO2), heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), rate of perceived exertion (RPE), and dyspnea were measured during cycling. Compared with CONC-M, lower V̇O2 (–52% ± 14%), VE (–47% ± 16%), fR (–21% ± 14%), HR (–14% ± 16%), SBP (–73% ± 54%), RPE (–36% ± 26%), and dyspnea (–41% ± 37%) were found during ECC-M. During ECC-H, a similar metabolic demand to CONC-M was found. However, average power output was 117% ± 79% higher during ECC-H. Eccentric cycling can be safely performed by COPD patients and induced lower cardiorespiratory, metabolic, and perceptual responses than concentric exercise when performed at the same workload. Novelty Moderate- and high-intensity eccentric cycling can be performed by COPD patients. Moderate-intensity eccentric cycling showed lower cardiorespiratory, metabolic, and perceptual demand than concentric cycling at the same workload in COPD patients. Even at double workload, eccentric cycling induces lower cardiorespiratory, metabolic, and perceptual demand than moderate-intensity concentric cycling.


Author(s):  
Sáez Guillermo ◽  
◽  
Laurin Lynda L. ◽  
Ariza Andres ◽  
Alexander Koshcheyev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document