Carbohydrate-Electrolyte Feedings and 1h Time Trial Cycling Performance

2004 ◽  
Vol 14 (5) ◽  
pp. 541-549 ◽  
Author(s):  
Ben Desbrow ◽  
Sally Anderson ◽  
Jennifer Barrett ◽  
Elissa Rao ◽  
Mark Hargreaves

The effects of a commercial sports drink on performance in high-intensity cycling was investigated. Nine well-trained subjects were asked to complete a set amount of work as fast as possible (time trial) following 24 h of dietary (subjects were provided with food, energy 57.4 ± 2.4 kcal/kg and carbohydrate 9.1 ± 0.4 g/kg) and exercise control. During exercise, subjects were provided with 14 mL/kg of either 6% carbohydrate-electrolyte (CHO-E) solution or carbohydrate-free placebo (P). Results showed that subjects’ performances did not greatly improve (time, 62:34 ± 6:44 min:sec (CHO-E) vs. 62:40 ± 5:35 min:sec (P); average power output, 283.0 ± 25.0 W (CHO-E) vs. 282.9 ± 29.3 W (P), P > 0.05) while consuming the sports drink. It was concluded that CHO-E consumption throughout a 1-h time trial, following a pre-exercise dietary regimen designed to optimize glucose availability, did not improve time or power output to a greater degree than P in well-trained cyclists.

1999 ◽  
Vol 13 (4) ◽  
pp. 444-457 ◽  
Author(s):  
Bonnie G. Berger ◽  
Robert W. Motl ◽  
Brian D. Butki ◽  
David T. Martin ◽  
John G. Wilkinson ◽  
...  

This study examined changes in mood and performance in response to high-intensity, short-duration overtraining and a subsequent taper. Pursuit cyclists (N = 8) at the United States Olympic Training Center completed the POMS and simulated 4-km pursuit performance tests throughout a six-week period. The six-week period included a baseline week, three weeks of overtraining that consisted primarily of high-intensity interval training, and a two-week taper. Total Mood Disturbance (TMD) scores displayed a quadratic polynomial effect across the three weeks of overtraining (p < .01), with the highest TMD scores occurring in the second week. Average TMD scores were lower during the taper than at baseline (p < .02) and lower at taper than overtraining (p < .0005). Cycling performance (pursuit time and average power output) improved during the three weeks of overtraining; additional improvements were observed during the taper. There were no significant correlations between TMD and performance. However, pursuit time, average power output, and mood disturbance scores were at optimal levels throughout the taper period. These findings suggest that high-intensity, short-duration overtraining may not result in an overtraining syndrome in 4-km pursuit cyclists.


2007 ◽  
Vol 2 (4) ◽  
pp. 377-385 ◽  
Author(s):  
Lars R. McNaughton ◽  
Steve Kenney ◽  
Jason Siegler ◽  
Adrian W. Midgley ◽  
Ric J. Lovell ◽  
...  

Context:Recently, superoxygenated-water beverages have emerged as a new purported ergogenic substance.Purpose:This study aimed to determine the effects of superoxygenated water on submaximal endurance performance.Methods:Eleven active male subjects, VO2max 52.6 ± 4.8 mL · kg−1 · min−1, height 180.0 ± 2.0 cm, weight 76.0 ± 7.0 kg, age 24 ± 1.0 y (mean ± SD), completed a 45-min cycle-ergometry exercise test at 70% of their previously predicted maximal power output with a 10-min rest period, followed by a 15-min time trial (TT). Thirty minutes before the exercise test subjects consumed 15 mL of either superoxygenated water (E) or placebo (P; water mixed with low-chlorine solution). Subjects then completed the test again a week later for the other condition (double-blind, randomized). The physiological variables measured during exercise were VO2, VCO2, respiratory-exchange ratio (RER), VE, PO2, PCO2, blood lactate (bLa–), and heart rate (HR). Mean distance covered and the average power output for the 15-min TT were also measured as performance indicators.Results:There were no significant differences in VO2, VCO2, RER, VE, bLa−, PO2, and HR (P > .05) during the exercise tests. Neither were there any significant improvements in the total distance covered (P 9.01 ± 0.74 km vs E 8.96 ± 0.68 km, P > .05) or the average power output (P 186.7 ± 35.8 W vs E 179.0 ± 25.9 W, P > .05) during the 15-min TT.Conclusion:Based on these results the authors conclude that consuming 15 mL of superoxygenated water does not enhance submaximal or maximal TT cycling performance.


2005 ◽  
Vol 30 (1) ◽  
pp. 46-60 ◽  
Author(s):  
David J. Bentley ◽  
Veronica E. Vleck ◽  
Gregoire P. Millet

The purpose of this study was to determine the relationship between the isocapnic buffer (βisocapnic) and hypocapnic hyperventilation (HHV) phases as well as performance in a short (20-min) and long (90-min) time trial (TT) in trained athletes. In addition, gross (GE, %) and delta (ΔE, %) efficiency were calculated and the relationship between these variables and the average power output (W) in each TT was determined. Thirteen male endurance athletes (Mean ± SD age 31 ± 6 yrs; body mass 75.6 ± 6.3 kg; height 185 ± 6 cm) completed a continuous incremental test to exhaustion for determination of the βisocapnic and HHV phases. A second submaximal test was used to determine GE and ΔE. The average power output (W) was measured in a 20-min and 90-min cycling TT. The βisocapnic phase (W) was significantly correlated to the average power output (W) in the 20-min TT (r = 0.58; p <  0.05), but not in the 90-min TT (r = 0.28). The HHV phase (W) was not significantly correlated to the average power output in the 20-min or 90-min TT. No significant correlation was found for GE or for ΔE and performance in the TT. The data from this study shows that βisocapnic together with HHV is not likely to be a useful indicator of cycle TT performance of 20- to 90-min duration. Furthermore, GE and ΔE determined from a submaximal incremental stepwise test are not related to cycling TT performance of different duration. Key words: incremental, correlation, metabolism, athletes, fatigue


2017 ◽  
Vol 12 (8) ◽  
pp. 1085-1092
Author(s):  
Nathan G. Lawler ◽  
Chris R. Abbiss ◽  
Aaron Raman ◽  
Timothy J. Fairchild ◽  
Garth L. Maker ◽  
...  

Purpose:To examine the influence of manipulating aerobic contribution after whole-blood removal on pacing patterns, performance, and energy contribution during self-paced middle-distance cycling.Methods:Seven male cyclists (33 ± 8 y) completed an incremental cycling test followed 20 min later by a 4-min self-paced cycling time trial (4MMP) on 6 separate occasions over 42 d. The initial 2 sessions acted as familiarization and baseline testing, after which 470 mL of blood was removed, with the remaining sessions performed 24 h, 7 d, 21 d, and 42 d after blood removal. During all 4MMP trials, power output, oxygen uptake, and aerobic and anaerobic contribution to power were determined.Results:4MMP average power output significantly decreased by 7% ± 6%, 6% ± 8%, and 4% ± 6% at 24 h, 7 d, and 21 d after blood removal, respectively. Compared with baseline, aerobic contribution during the 4MMP was significantly reduced by 5% ± 4%, 4% ± 5%, and 4% ± 10% at 24 h, 7 d, and 21 d, respectively. The rate of decline in power output on commencement of the 4MMP was significantly attenuated and was 76% ± 20%, 72% ± 24%, and 75% ± 35% lower than baseline at 24 h, 21 d, and 42 d, respectively.Conclusion:Removal of 470 mL of blood reduces aerobic energy contribution, alters pacing patterns, and decreases performance during self-paced cycling. These findings indicate the importance of aerobic energy distribution during self-paced middle-distance events.


2014 ◽  
Vol 9 (4) ◽  
pp. 610-614 ◽  
Author(s):  
Robert P. Lamberts

In high-performance cycling, it is important to maintain a healthy balance between training load and recovery. Recently a new submaximal cycle test, known as the Lamberts and Lambert Submaximal Cycle Test (LSCT), has been shown to be able to accurately predict cycling performance in 15 well-trained cyclists. The aim of this study was to determine the predictive value of the LSCT in 102 trained to elite cyclists (82 men and 20 women). All cyclists performed an LSCT test followed by a peak-power-output (PPO) test, which included respiratory-gas analysis for the determination of maximal oxygen consumption (VO2max). They then performed the LSCT test followed by a 40-km time trial (TT) 72 h later. Average power output during the 3 stages of the LSCT increased from 31%, 60%, and 79% of PPO, while the ratings of perceived exertion increased from 8 to 13 to 16. Very good relationships were found between actual and LSCT-predicted PPO (r = .98, 95%CI: .97–.98, P < .0001), VO2max (r = .96, 95%CI: .97–.99, P < .0001) and 40-km-TT time (r = .98, 95%CI: .94–.97, P < .0001). No gender differences were found when predicting cycling performance from the LSCT (P = .95). The findings of this study show that the LSCT is able to accurately predict cycling performance in trained to elite male and female cyclists and potentially can be used to prescribe and fine-tune training prescription in cycling.


2020 ◽  
Vol 45 (11) ◽  
pp. 1232-1237
Author(s):  
Rolf Nickel ◽  
Felipe Troncoso ◽  
Orlando Flores ◽  
Roberto Gonzalez-Bartholin ◽  
Karen Mackay ◽  
...  

We aimed to compare the cardiorespiratory, metabolic, and perceptual responses to high- and moderate-intensity eccentric cycling versus moderate-intensity concentric cycling in chronic obstructive pulmonary disease (COPD) patients. Ten patients with moderate COPD (forced expiratory volume in 1 s (FEV1) = 68.6% ± 20.4% of predicted; 68.3 ± 9.1 years) performed 30 min of moderate-intensity concentric (CONC-M: 50% maximum workload; Wmax), moderate-intensity eccentric (ECC-M: 50% Wmax), and high-intensity eccentric (ECC-H: 100% Wmax) cycling. Average power output, oxygen consumption (V̇O2), minute ventilation (VE), respiratory frequency (fR), oxygen saturation (SpO2), heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), rate of perceived exertion (RPE), and dyspnea were measured during cycling. Compared with CONC-M, lower V̇O2 (–52% ± 14%), VE (–47% ± 16%), fR (–21% ± 14%), HR (–14% ± 16%), SBP (–73% ± 54%), RPE (–36% ± 26%), and dyspnea (–41% ± 37%) were found during ECC-M. During ECC-H, a similar metabolic demand to CONC-M was found. However, average power output was 117% ± 79% higher during ECC-H. Eccentric cycling can be safely performed by COPD patients and induced lower cardiorespiratory, metabolic, and perceptual responses than concentric exercise when performed at the same workload. Novelty Moderate- and high-intensity eccentric cycling can be performed by COPD patients. Moderate-intensity eccentric cycling showed lower cardiorespiratory, metabolic, and perceptual demand than concentric cycling at the same workload in COPD patients. Even at double workload, eccentric cycling induces lower cardiorespiratory, metabolic, and perceptual demand than moderate-intensity concentric cycling.


Author(s):  
Lieke E. van Iersel ◽  
Yala R. Stevens ◽  
Jose M. Conchillo ◽  
Freddy J. Troost

Abstract Background Nutritional supplementation is commonly used by athletes to improve their exercise performance. Previous studies demonstrated that citrus flavonoid extract (CFE) supplementation may be an effective strategy to improve exercise performance in male athletes. Yet, no conclusive research has been performed to investigate the effect of chronic CFE supplementation on high-intensity exercise performance under anaerobic conditions. Therefore, the aim of the study was to assess whether CFE supplementation in daily dosages of 400 and 500 mg for a period of 4 and 8 weeks improves anaerobic exercise capacity. Methods A randomized, double-blind, placebo controlled, parallel clinical study was conducted in 92 moderately trained healthy men and women. Subjects were randomized to receive 400 mg of CFE (n = 30), 500 mg of CFE (n = 31) or placebo (n = 31) daily, for 8 consecutive weeks. The Wingate anaerobic test was used to assess anaerobic exercise capacity and power output at baseline, after 4 weeks and after 8 weeks. Results After 4 weeks supplementation, average power output significantly increased in the 400 mg group (Estimated difference [ED] = 38.2 W [18.0, 58.3]; p < 0.001; effect size [ES] = 0.27) and in the 500 mg group (ED = 21.2 W [0.91, 41.4]; p = 0.041; ES = 0.15) compared to placebo. The 5 s peak power output was also increased in the 400 mg group (ED = 53.6 [9.96, 97.2]; p = 0.017; ES = 0.25) after 4 weeks compared to placebo. After 8 weeks of supplementation, average power output was significantly improved in the group receiving 400 mg of CFE (ED = 31.6 [8.33, 54.8]; p = 0.008; ES = 0.22) compared to placebo. Conclusion These results demonstrate that CFE supplementation improved anaerobic capacity and peak power during high intensity exercise in moderately trained individuals. Further research is needed to identify the underlying mechanisms that are affected by CFE supplementation. Trial registration ClinicalTrials.gov (NCT03044444). Registered 7 February 2017


2015 ◽  
Vol 25 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Michael L. Newell ◽  
Angus M. Hunter ◽  
Claire Lawrence ◽  
Kevin D. Tipton ◽  
Stuart D. R. Galloway

In an investigator-blind, randomized cross-over design, male cyclists (mean± SD) age 34.0 (± 10.2) years, body mass 74.6 (±7.9) kg, stature 178.3 (±8.0) cm, peak power output (PPO) 393 (±36) W, and VO2max 62 (±9) ml·kg−1min−1 training for more than 6 hr/wk for more than 3y (n = 20) completed four experimental trials. Each trial consisted of a 2-hr constant load ride at 95% of lactate threshold (185 ± 25W) then a work-matched time trial task (~30min at 70% of PPO). Three commercially available carbohydrate (CHO) beverages, plus a control (water), were administered during the 2-hr ride providing 0, 20, 39, or 64g·hr−1 of CHO at a fluid intake rate of 1L·hr−1. Performance was assessed by time to complete the time trial task, mean power output sustained, and pacing strategy used. Mean task completion time (min:sec ± SD) for 39g·hr−1 (34:19.5 ± 03:07.1, p = .006) and 64g·hr−1 (34:11.3 ± 03:08.5 p = .004) of CHO were significantly faster than control (37:01.9 ± 05:35.0). The mean percentage improvement from control was −6.1% (95% CI: −11.3 to −1.0) and −6.5% (95% CI: −11.7 to −1.4) in the 39 and 64g·hr−1 trials respectively. The 20g·hr−1 (35:17.6 ± 04:16.3) treatment did not reach statistical significance compared with control (p = .126) despite a mean improvement of −3.7% (95% CI −8.8−1.5%). No further differences between CHO trials were reported. No interaction between CHO dose and pacing strategy occurred. 39 and 64g·hr−1 of CHO were similarly effective at improving endurance cycling performance compared with a 0g·hr−1 control in our trained cyclists.


Sign in / Sign up

Export Citation Format

Share Document