scholarly journals Open source 3D phenotyping of chickpea plant architecture across plant development

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
William T. Salter ◽  
Arjina Shrestha ◽  
Margaret M. Barbour

Abstract Background Being able to accurately assess the 3D architecture of plant canopies can allow us to better estimate plant productivity and improve our understanding of underlying plant processes. This is especially true if we can monitor these traits across plant development. Photogrammetry techniques, such as structure from motion, have been shown to provide accurate 3D reconstructions of monocot crop species such as wheat and rice, yet there has been little success reconstructing crop species with smaller leaves and more complex branching architectures, such as chickpea. Results In this work, we developed a low-cost 3D scanner and used an open-source data processing pipeline to assess the 3D structure of individual chickpea plants. The imaging system we developed consists of a user programmable turntable and three cameras that automatically captures 120 images of each plant and offloads these to a computer for processing. The capture process takes 5–10 min for each plant and the majority of the reconstruction process on a Windows PC is automated. Plant height and total plant surface area were validated against “ground truth” measurements, producing R2 > 0.99 and a mean absolute percentage error < 10%. We demonstrate the ability to assess several important architectural traits, including canopy volume and projected area, and estimate relative growth rate in commercial chickpea cultivars and lines from local and international breeding collections. Detailed analysis of individual reconstructions also allowed us to investigate partitioning of plant surface area, and by proxy plant biomass. Conclusions Our results show that it is possible to use low-cost photogrammetry techniques to accurately reconstruct individual chickpea plants, a crop with a complex architecture consisting of many small leaves and a highly branching structure. We hope that our use of open-source software and low-cost hardware will encourage others to use this promising technique for more architecturally complex species.

2020 ◽  
Author(s):  
William T. Salter ◽  
Arjina Shrestha ◽  
Margaret M Barbour

AbstractIn this work, we developed a low-cost 3D scanner and used an open source data processing pipeline to phenotype the 3D structure of individual chickpea plants. Being able to accurately assess the 3D architecture of plant canopies can allow us to better estimate plant productivity and improve our understanding of underlying plant processes. This is especially true if we can monitor these traits across plant development. Photogrammetry techniques, such as structure from motion, have been shown to provide accurate 3D reconstructions of monocot crop species such as wheat and rice, yet there has been little success reconstructing crop species with smaller leaves and more complex branching architectures, such as chickpea. The imaging system we developed consists of a user programmable turntable and three cameras that automatically captures 120 images of each plant and offloads these to a computer for processing. The capture process takes 5-10 minutes for each plant and the majority of the reconstruction process on a Windows PC is automated. Plant height and total plant surface area were validated against “ground truth” measurements, producing R2 > 0.99 and a mean absolute percentage error < 10%. We demonstrate the ability to assess several important architectural traits, including canopy volume and projected area, and estimate relative growth rate in commercial chickpea cultivars and lines from local and international breeding collections. Detailed analysis of individual reconstructions also allowed us to investigate partitioning of plant surface area, and by proxy plant biomass.


2020 ◽  
Vol 81 (3) ◽  
pp. 499-507 ◽  
Author(s):  
Hande Günan Yücel ◽  
Zümriye Aksu ◽  
Gülşah Büşra Yalçınkaya ◽  
Sevgi Ertuğrul Karatay ◽  
Gönül Dönmez

Abstract In the current batch study, lithium(I) ion sorption behaviors of Aspergillus versicolor fungus and newly isolated Kluyveromyces marxianus yeast were investigated comparatively. Surface and structural characterization studies of the biosorbents carried out with Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), surface area and zeta potential analyses showed that isolated K. marxianus yeast from salty wastes has more preferable properties (i.e. higher porosity, surface area and negativity) for cation sorption. Biosorption studies also supported this estimation; higher lithium(I) sorption capacities were obtained with K. marxianus cells at all experimental conditions studied. Rapid sorption profiles of the sorbents demonstrated that physical interaction is the main mechanism in this system. The effects of pH and initial lithium(I) concentration on the lithium(I) sorption capacities of biosorbents were examined. The maximum adsorption capacities of 347.9 and 409.2 μmol lithium(I)/g biosorbent were obtained at an initial lithium(I) concentration of 20 mg/L at pH 9.0 using A. versicolor and K. marxianus, respectively. The equilibrium data fitted both Langmuir and Freundlich models in the concentration ranges studied. This study revealed that K. marxianus yeast can be used for effective, rapid and low cost capture process of lithium(I) ions from aqueous solutions.


2020 ◽  
Vol 52 ◽  
pp. 55-61
Author(s):  
Ettore Potente ◽  
Cosimo Cagnazzo ◽  
Alessandro Deodati ◽  
Giuseppe Mastronuzzi

2019 ◽  
Author(s):  
Ayesha Tariq ◽  
M. Abdullah Iqbal ◽  
S. Irfan Ali ◽  
Muhammad Z. Iqbal ◽  
Deji Akinwande ◽  
...  

<p>Nanohybrids, made up of Bismuth ferrites/Carbon allotropes, are extensively used in photocatalytic applications nowadays. Our work proposes a nanohybrid system composed of Bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets namely, the BiFeO<sub>3</sub> (BFO)/Ti<sub>3</sub>C<sub>2</sub> (MXene) nanohybrid for enhanced photocatalytic activity. We have fabricated the BFO/MXene nanohybrid using simple and low cost double solvent solvothermal method. The SEM and TEM images show that the BFO nanoparticles were attached onto the MXene surface and in the inter-layers of two-dimensional (2D) MXene sheets. The photocatalytic application is tested for the visible light irradiation which showed the highest efficiency among all pure-BFO based photocatalysts, i.e. 100% degradation in 42 min for organic dye (Congo Red) and colorless aqueous pollutant (acetophenone) in 150 min, respectively. The present BFO-based hybrid system exhibited the large surface area of 147 m<sup>2</sup>g<sup>-1</sup>measured via Brunauer-Emmett-Teller (BET) sorption-desorption technique, and is found to be largest among BFO and its derivatives. Also, the photoluminescence (PL) spectra indicate large electron-hole pair generation. Fast and efficient degradation of organic molecules is supported by both factors; larger surface area and lower electron-hole recombination rate. The BFO/MXene nanohybrid presented here is a highly efficient photocatalyst compared to other nanostructures based on pure BiFeO<sub>3</sub> which makes it a promising candidate for many future applications.</p>


2020 ◽  
Author(s):  
Andrew Fang ◽  
Jonathan Kia-Sheng Phua ◽  
Terrence Chiew ◽  
Daniel De-Liang Loh ◽  
Lincoln Ming Han Liow ◽  
...  

BACKGROUND During the Coronavirus Disease 2019 (COVID-19) outbreak, community care facilities (CCF) were set up as temporary out-of-hospital isolation facilities to contain the surge of cases in Singapore. Confined living spaces within CCFs posed an increased risk of communicable disease spread among residents. OBJECTIVE This inspired our healthcare team managing a CCF operation to design a low-cost communicable disease outbreak surveillance system (CDOSS). METHODS Our CDOSS was designed with the following considerations: (1) comprehensiveness, (2) efficiency through passive reconnoitering from electronic medical record (EMR) data, (3) ability to provide spatiotemporal insights, (4) low-cost and (5) ease of use. We used Python to develop a lightweight application – Python-based Communicable Disease Outbreak Surveillance System (PyDOSS) – that was able perform syndromic surveillance and fever monitoring. With minimal user actions, its data pipeline would generate daily control charts and geospatial heat maps of cases from raw EMR data and logged vital signs. PyDOSS was successfully implemented as part of our CCF workflow. We also simulated a gastroenteritis (GE) outbreak to test the effectiveness of the system. RESULTS PyDOSS was used throughout the entire duration of operation; the output was reviewed daily by senior management. No disease outbreaks were identified during our medical operation. In the simulated GE outbreak, PyDOSS was able to effectively detect an outbreak within 24 hours and provided information about cluster progression which could aid in contact tracing. The code for a stock version of PyDOSS has been made publicly available. CONCLUSIONS PyDOSS is an effective surveillance system which was successfully implemented in a real-life medical operation. With the system developed using open-source technology and the code made freely available, it significantly reduces the cost of developing and operating CDOSS and may be useful for similar temporary medical operations, or in resource-limited settings.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2944
Author(s):  
Benjamin James Ralph ◽  
Marcel Sorger ◽  
Benjamin Schödinger ◽  
Hans-Jörg Schmölzer ◽  
Karin Hartl ◽  
...  

Smart factories are an integral element of the manufacturing infrastructure in the context of the fourth industrial revolution. Nevertheless, there is frequently a deficiency of adequate training facilities for future engineering experts in the academic environment. For this reason, this paper describes the development and implementation of two different layer architectures for the metal processing environment. The first architecture is based on low-cost but resilient devices, allowing interested parties to work with mostly open-source interfaces and standard back-end programming environments. Additionally, one proprietary and two open-source graphical user interfaces (GUIs) were developed. Those interfaces can be adapted front-end as well as back-end, ensuring a holistic comprehension of their capabilities and limits. As a result, a six-layer architecture, from digitization to an interactive project management tool, was designed and implemented in the practical workflow at the academic institution. To take the complexity of thermo-mechanical processing in the metal processing field into account, an alternative layer, connected with the thermo-mechanical treatment simulator Gleeble 3800, was designed. This framework is capable of transferring sensor data with high frequency, enabling data collection for the numerical simulation of complex material behavior under high temperature processing. Finally, the possibility of connecting both systems by using open-source software packages is demonstrated.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 149
Author(s):  
André Olean-Oliveira ◽  
Gilberto A. Oliveira Brito ◽  
Celso Xavier Cardoso ◽  
Marcos F. S. Teixeira

The use of graphene and its derivatives in the development of electrochemical sensors has been growing in recent decades. Part of this success is due to the excellent characteristics of such materials, such as good electrical and mechanical properties and a large specific surface area. The formation of composites and nanocomposites with these two materials leads to better sensing performance compared to pure graphene and conductive polymers. The increased large specific surface area of the nanocomposites and the synergistic effect between graphene and conducting polymers is responsible for this interesting result. The most widely used methodologies for the synthesis of these materials are still based on chemical routes. However, electrochemical routes have emerged and are gaining space, affording advantages such as low cost and the promising possibility of modulation of the structural characteristics of composites. As a result, application in sensor devices can lead to increased sensitivity and decreased analysis cost. Thus, this review presents the main aspects for the construction of nanomaterials based on graphene oxide and conducting polymers, as well as the recent efforts made to apply this methodology in the development of sensors and biosensors.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 572
Author(s):  
Mads Jochumsen ◽  
Taha Al Muhammadee Janjua ◽  
Juan Carlos Arceo ◽  
Jimmy Lauber ◽  
Emilie Simoneau Buessinger ◽  
...  

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients.


2014 ◽  
Vol 61 ◽  
pp. 365-368 ◽  
Author(s):  
Chunfeng Song ◽  
Yasuki Kansha ◽  
Masanori Ishizuka ◽  
Qian Fu ◽  
Atsushi Tsutsumi

2011 ◽  
Vol 08 (04) ◽  
pp. 557-575 ◽  
Author(s):  
CHRISTINA RAASCH

Open source (OS) has raised significant attention in industrial practice and in scholarly research as a new and successful mode of product development. This paper is among the first to study open source development processes outside their original context, the software industry. In particular, we investigate the development of tangible products in so-called open design projects. We study how open design projects address the challenges usually put forward in the literature as barriers to the open development of tangible products. The analysis rests on the comparative qualitative investigation of four cases from different industries. We find that, subject to certain contingencies, open design processes can be organized to resemble OSS development processes to a considerable degree. Some practices are established specifically to uphold OS principles in the open design context, while others starkly differ from those found in OSS development. Our discussion focusses on different aspects of modularity as well as the availability of low-cost tools.


Sign in / Sign up

Export Citation Format

Share Document