scholarly journals Application of decellularized bone matrix as a bioscaffold in bone tissue engineering

2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Halimeh Amirazad ◽  
Mehdi Dadashpour ◽  
Nosratollah Zarghami

AbstractAutologous bone grafts are commonly used as the gold standard to repair and regenerate diseased bones. However, they are strongly associated with postoperative complications, especially at the donor site, and increased surgical costs. In an effort to overcome these limitations, tissue engineering (TE) has been proposed as an alternative to promote bone repair. The successful outcome of tissue engineering depends on the microstructure and composition of the materials used as scaffold. Decellularized bone matrix-based biomaterials have been applied as bioscaffolds in bone tissue engineering. These biomaterials play an important role in providing the mechanical and physical microenvironment needed by cells to proliferate and survive. Decellularized extracellular matrix (dECM) can be used as a powder, hydrogel and electrospun scaffolds. These bioscaffolds mimic the native microenvironment due to their structure similar to the original tissue. The aim of this review is to highlight the bone decellularization techniques. Herein we discuss: (1) bone structure; (2) properties of an ideal scaffold; (3) the potential of decellularized bone as bioscaffolds; (4) terminal sterilization of decellularized bone; (5) cell removing confirmation in decellularized tissues; and (6) post decellularization procedures. Finally, the improvement of bone formation by dECM and the immunogenicity aspect of using the decellularized bone matrix are presented, to illustrate how novel dECM-based materials can be used as bioscaffold in tissue engineering. A comprehensive understanding of tissue engineering may allow for better incorporation of therapeutic approaches in bone defects allowing for bone repair and regeneration.

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Thakoon Thitiset ◽  
Siriporn Damrongsakkul ◽  
Supansa Yodmuang ◽  
Wilairat Leeanansaksiri ◽  
Jirun Apinun ◽  
...  

Abstract Background A novel biodegradable scaffold including gelatin (G), chitooligosaccharide (COS), and demineralized bone matrix (DBM) could play a significant part in bone tissue engineering. The present study aimed to investigate the biological characteristics of composite scaffolds in combination of G, COS, and DBM for in vitro cell culture and in vivo animal bioassays. Methods Three-dimensional scaffolds from the mixture of G, COS, and DBM were fabricated into 3 groups, namely, G, GC, and GCD using a lyophilization technique. The scaffolds were cultured with mesenchymal stem cells (MSCs) for 4 weeks to determine biological responses such as cell attachment and cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, cell morphology, and cell surface elemental composition. For the in vivo bioassay, G, GC, and GCD, acellular scaffolds were implanted subcutaneously in 8-week-old male Wistar rats for 4 weeks and 8 weeks. The explants were assessed for new bone formation using hematoxylin and eosin (H&E) staining and von Kossa staining. Results The MSCs could attach and proliferate on all three groups of scaffolds. Interestingly, the ALP activity of MSCs reached the greatest value on day 7 after cultured on the scaffolds, whereas the calcium assay displayed the highest level of calcium in MSCs on day 28. Furthermore, weight percentages of calcium and phosphorus on the surface of MSCs after cultivation on the GCD scaffolds increased when compared to those on other scaffolds. The scanning electron microscopy images showed that MSCs attached and proliferated on the scaffold surface thoroughly over the cultivation time. Mineral crystal aggregation was evident in GC and greatly in GCD scaffolds. H&E staining illustrated that G, GC, and GCD scaffolds displayed osteoid after 4 weeks of implantation and von Kossa staining confirmed the mineralization at 8 weeks in G, GC, and GCD scaffolds. Conclusion The MSCs cultured in GCD scaffolds revealed greater osteogenic differentiation than those cultured in G and GC scaffolds. Additionally, the G, GC, and GCD scaffolds could promote in vivo ectopic bone formation in rat model. The GCD scaffolds exhibited maximum osteoinductive capability compared with others and may be potentially used for bone regeneration.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Keith A. Blackwood ◽  
Nathalie Bock ◽  
Tim R. Dargaville ◽  
Maria Ann Woodruff

There remains a substantial shortfall in the treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue-engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors, which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However due to the cost and potential complications associated with growth factors, controlling the rate of release is an important design consideration when developing new bone tissue engineering strategies. This paper will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.


Author(s):  
Ozan Karaman ◽  
Cenk Celik ◽  
Aylin Sendemir Urkmez

Cranial, maxillofacial, and oral fractures, as well as large bone defects, are currently being treated by auto- and allograft procedures. These techniques have limitations such as immune response, donor-site morbidity, and lack of availability. Therefore, the interest in tissue engineering applications as replacement for bone graft has been growing rapidly. Typical bone tissue engineering models require a cell-supporting scaffold in order to maintain a 3-dimensional substrate mimicking in vivo extracellular matrix for cells to attach, proliferate and function during the formation of bone tissue. Combining the understanding of molecular and structural biology with materials engineering and design will enable new strategies for developing biological tissue constructs with clinical relevance. Self-assembled biomimetic scaffolds are especially suitable as they provide spatial and temporal regulation. Specifically, self-assembling peptides capable of in situ gelation serve as attractive candidates for minimally invasive injectable therapies in bone tissue engineering applications.


2016 ◽  
Vol 705 ◽  
pp. 297-303
Author(s):  
Shirin Ibrahim ◽  
Syazana Abu Bakar ◽  
Mohamad Azmirruddin Ahmad ◽  
Nurul Awanis Johan ◽  
Siti Farhana Hisham ◽  
...  

Osteogenesis and degradability of bioresorbable biphasic gypsum-carbonated apatite granules (BPG) were investigated. Three different sizes of gypsum, 300-600 μm (small), 600-1000 μm (medium) and 1000-2000 μm (large), denoted as S, M and L respectively, were developed through the crushing and sieving method. Exposure of gypsum granules in carbonate and phosphate sources formed BPG through dissolution and precipitation mechanism. BPG was firstly examined by X-ray Diffractometer (XRD) and Fourier Transform Infrared Spectrometer (FTIR) to confirm its phase and chemical composition respectively. In-vitro cell proliferation, alkaline phosphatase (ALP) activity and adhesion of human osteoblast (hFOB) were investigated for osteogenesis evaluation. Degradability in phosphate buffer saline (PBS) was characterized by weight loss whereas apatite mineralization on the BPG surface was examined using Scanning Electron Microscope (SEM). BPG with 300-600 μm and 600-1000 μm enhanced osteogenic differentiation of hFOB and accelerated differentiation process better than 1000-2000 μm as indicated by cell proliferation and ALP activity. Good hFOB adhesion was observed on all BPG surfaces. The weight loss of L and M was 68% and 59%, respectively, which are higher than S at only 32%, indicating faster degradation of large BPG compared to smaller granules upon immersion for 35 days. This in turn, suggested the ionic dissolution of BPG which has contributed to the apatite formation on its surface. The results suggest, the BPG mimicked the bone matrix, exhibited good osteogenesis and degradability, which might be used as a potential candidate for bone tissue engineering.


2010 ◽  
Vol 4 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Sittisak Honsawek ◽  
Piyanuch Bumrungpanichthaworn ◽  
Voranuch Thanakit ◽  
Vachiraporn Kunrangseesomboon ◽  
Supamongkon Muchmee ◽  
...  

Abstract Background: Demineralized bone matrix (DBM) is extensively used in orthopedic, periodontal, and maxillofacial application and investigated as a material to induce new bone formation. Small intestinal submucosa (SIS) derived from the submucosa layer of porcine intestine has widely utilized as biomaterial with minimum immune response. Objectives: Determine the osteoinductive potential of SIS, DBM, SIS/DBM composites in the in vitro cell culture and in vivo animal bioassays for bone tissue engineering. Materials and methods: Human periosteal (HPO) cells were treated in the absence or presence SIS, DBM, and SIS/DBM. Cell proliferation was examined by direct cell counting. Osteoblast differentiation of the HPO cells was analyzed with alkaline phosphatase activity assay. The Wistar rat muscle implant model was used to evaluate the osteoinductive potential of SIS, DBM, and SIS/DBM composites. Results: HPO cells could differentiate along osteogenic lineage when treated with either DBM or SIS/DBM. SIS/ DBM had a tendency to promote more cellular proliferation and osteoblast differentiation than the other treatments. In Wistar rat bioassay, SIS showed no new bone formation and the implants were surrounded by fibrous tissues. DBM demonstrated new bone formation along the edge of old DBM particles. SIS/DBM composite exhibited high osteoinductivity, and the residual SIS/DBM was surrounded by osteoid-like matrix and newly formed bone. Conclusion: DBM and SIS/DBM composites could retain their osteoinductive capability. SIS/DBM scaffolds may provide an alternative approach for bone tissue engineering.


2018 ◽  
Vol 5 (3-4) ◽  
pp. 97-109 ◽  

Bone diseases and injuries have a major impact on the quality of life. Classical treatments for bone repair/regeneration/replacement have various disadvantages. Bone tissue engineering (BTE) received a great attention in the last years. Natural polymers are intensively studied in this field due to their properties (biocompatibility, biodegradability, abundance in nature, high processability). Unfortunately, their mechanical properties are poor, which is why synthetic polymers or ceramics are added in order to provide the optimal compressive, elastic or fatigue strength. Moreover, growth factors, vitamins, or antimicrobial substances are also added to enhance the cell behavior (attachment, proliferation, and differentiation). In this review, new scientific results regarding potential applications of chitosan-, alginate-, and gelatin based biocomposites in BTE will be provided, along with their in vitro and/or in vivo tests.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qi Zhang ◽  
Yanjing Ji ◽  
Weiping Zheng ◽  
Mingzhe Yan ◽  
Danyang Wang ◽  
...  

Electrospun polymer/metal composite nanofibers have received much attention in the field of bone tissue engineering and regenerative medicine (BTERM) owing to their extracellular matrix- (ECM-) like structure, sufficient mechanical strength, favorable biological properties, and bone induction. In particular, electrospun nanofibers containing strontium (Sr) can significantly promote bone repair and regeneration by mediating osteolysis and osteogenesis, which offers a promising bioactive material for BTERM. In this review, we summarized the effects of electrospun nanofibers containing Sr on stem cells, osteoblasts, and osteoclasts in BTERM. Also, current challenges and future perspectives for electrospun nanofibers containing Sr in BTERM are briefly outlined. It is hoped that the systematic overview will inspire the readers to further study Sr-containing nanofibers for BTERM and accelerate their translation from the bench to the clinic.


2020 ◽  
Vol 7 (2) ◽  
pp. 52 ◽  
Author(s):  
Weidong Weng ◽  
Victor Häussling ◽  
Romina H. Aspera-Werz ◽  
Fabian Springer ◽  
Helen Rinderknecht ◽  
...  

Cryogels represent ideal carriers for bone tissue engineering. We recently described the osteogenic potential of cryogels with different protein additives, e.g., platelet-rich plasma (PRP). However, these scaffolds raised concerns as different toxic substances are required for their preparation. Therefore, we developed another gelatin (GEL)-based cryogel. This study aimed to compare the two scaffolds regarding their physical characteristics and their influence on osteogenic and osteoclastic cells. Compared to the PRP scaffolds, GEL scaffolds had both larger pores and thicker walls, resulting in a lower connective density. PRP scaffolds, with crystalized calcium phosphates on the surface, were significantly stiffer but less mineralized than GEL scaffolds with hydroxyapatite incorporated within the matrix. The GEL scaffolds favored adherence and proliferation of the osteogenic SCP-1 and SaOS-2 cells. Macrophage colony-stimulating factor (M-CSF) and osteoprotegerin (OPG) levels seemed to be induced by GEL scaffolds. Levels of other osteoblast and osteoclast markers were comparable between the two scaffolds. After 14 days, mineral content and stiffness of the cryogels were increased by SCP-1 and SaOS-2 cells, especially of PRP scaffolds. THP-1 cell-derived osteoclastic cells only reduced mineral content and stiffness of PRP cryogels. In summary, both scaffolds present powerful advantages; however, the possibility to altered mineral content and stiffness may be decisive when it comes to using PRP or GEL scaffolds for bone tissue engineering.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1570 ◽  
Author(s):  
Tanya J. Levingstone ◽  
Simona Herbaj ◽  
Nicholas J. Dunne

Bone injuries and diseases constitute a burden both socially and economically, as the consequences of a lack of effective treatments affect both the patients’ quality of life and the costs on the health systems. This impended need has led the research community’s efforts to establish efficacious bone tissue engineering solutions. There has been a recent focus on the use of biomaterial-based nanoparticles for the delivery of therapeutic factors. Among the biomaterials being considered to date, calcium phosphates have emerged as one of the most promising materials for bone repair applications due to their osteoconductivity, osteoinductivity and their ability to be resorbed in the body. Calcium phosphate nanoparticles have received particular attention as non-viral vectors for gene therapy, as factors such as plasmid DNAs, microRNAs (miRNA) and silencing RNA (siRNAs) can be easily incorporated on their surface. Calcium phosphate nanoparticles loaded with therapeutic factors have also been delivered to the site of bone injury using scaffolds and hydrogels. This review provides an extensive overview of the current state-of-the-art relating to the design and synthesis of calcium phosphate nanoparticles as carriers for therapeutic factors, the mechanisms of therapeutic factors’ loading and release, and their application in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document