scholarly journals BMP3 suppresses colon tumorigenesis via ActRIIB/SMAD2-dependent and TAK1/JNK signaling pathways

Author(s):  
Jialing Wen ◽  
Xianglin Liu ◽  
Yan Qi ◽  
Feng Niu ◽  
Zhitong Niu ◽  
...  

Abstract Background BMP3 gene is often found hypermethylated and hence inactivated in several types of cancers including colorectal cancer (CRC), indicating that it has a suppressor role in carcinogenesis. Though BMP3 is a reliable biomarker for screening CRC, the molecular mechanism of BMP3 in carcinogenesis remains largely unknown. Methods The expression level of BMP3 was examined by immunohistochemistry staining and western blot. Methylation-specific PCR (MSP) and real-time quantitative MSP were used to test the hypermethylation status of BMP3 gene. Analyses of BMP3 function in colon cancer cell proliferation, migration, invasion, and apoptosis were performed using HCT116 and KM12 cells. BMP3 was further knocked down or overexpressed in CRC cells, and the effects on cell growth of xenograft tumors in nude mice were assessed. Co-immunoprecipitation and immunofluorescence staining were used to analyze the association between BMP3 and BMPR2 or BMP3 and ActRIIB. Microarray analysis was performed to identify most differentially expressed genes and pathways regulated by BMP3. The BMP3-regulated SMAD2-dependent signaling pathway and TAK1/JNK signal axes were further investigated by quantitative PCR and western blot. Results BMP3 gene was hypermethylated and its expression was downregulated in both CRC tissues and cell lines. Expressing exogenous BMP3 in HCT116 inhibited cell growth, migration, and invasion and increased rate of apoptosis both in vitro and in vivo. However, shRNA-mediated attenuation of endogenous BMP3 in KM12 reversed such inhibitory and apoptotic effects. Furthermore, BMP3 could bind to ActRIIB, an activin type II receptor at the cellular membrane, thereby activating SMAD2-dependent pathway and TAK1/JNK signal axes to regulate downstream targets including caspase-7, p21, and SMAD4 that play crucial roles in cell cycle control and apoptosis. Conclusions Our study reveals a previously unknown mechanism of BMP3 tumor suppression in CRC and provides a rationale for future investigation of BMP3 as a potential target for the development of novel therapeutic agents to fight CRC.

2021 ◽  
Author(s):  
Wenpeng Cao ◽  
Zhirui Zeng ◽  
Runsang Pan ◽  
Zhiwei He ◽  
Hao Wu ◽  
...  

Abstract Background: Hypoxia participated in the occurrence and development of pancreatic cancer (PC). However, genes associated with hypoxia respond and their regulated mechanism in PC cells were unclear. The current research was aimed to illuminate the role and hypoxia regulated mechanism of fucosyltransferase 11 (FUT11) in the progression of PC.Methods: After predicting FUT11 as a key hypoxia associated gene in PC using bioinformatics analysis. The expression of FUT11 in PC using quantitative real-time fluorescent PCR, western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation, migration and invasion under normoxia and hypoxia were detected using Cell Counting Kit 8, 5-ethynyl-2’-deoxyuridine assay, colony formation assay and transwell assay. Spleen capsule injected liver metastasis and subcutaneously injected model were performed to confirm the effects of FUT11 in vivo. Furthermore, western blot, luciferase assay and immunoprecipitation were performed to explore the regulated relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC.Results: FUT11 was markedly increased of PC cells in hypoxia, up-regulated in the PC clinical tissues, and predicted a poor outcome. Inhibition of FUT11 reduced PC cell growth and mobility of PC cells under normoxia and hypoxia conditions in vitro, and growth and mobility in vivo. FUT11 bind with PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 knockdown significantly increased the degradation rate of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressiv impacts of FUT11 knockdown on PC cell growth and mobility. In addition, HIF1α bound to the enhancer of FUT11 and increased its expression, as well as co-expressing with FUT11 in PC tissues. Furthermore, overexpress of FUT11 partially rescued the suppressiv effects of HIF1α knockdown on PC cell growth and mobility in hypoxia conditions.Conclusion: Our data further implicate that hypoxia-induced FUT11 in PC contributes to proliferation and metastasis by maintaining the stability of PDK1, and suggest FUT11 maybe a novel and effective target for treatment of pancreatic cancer.


2021 ◽  
Author(s):  
Wenpeng Cao ◽  
Zhirui Zeng ◽  
Runsang Pan ◽  
Zhiwei He ◽  
Hao Wu ◽  
...  

Abstract Background: Hypoxia participated in the occurrence and development of pancreatic cancer (PC). However, genes associated with hypoxia respond and their regulated mechanism in PC cells were unclear. The current research was aimed to illuminate the role and hypoxia regulated mechanism of fucosyltransferase 11 (FUT11) in the progression of PC.Methods: After predicting FUT11 as a key hypoxia associated gene in PC using bioinformatics analysis. The expression of FUT11 in PC using quantitative real-time fluorescent PCR, western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation, migration and invasion under normoxia and hypoxia were detected using Cell Counting Kit 8, 5-ethynyl-2’-deoxyuridine assay, colony formation assay and transwell assay. Spleen capsule injected liver metastasis and subcutaneously injected model were performed to confirm the effects of FUT11 in vivo. Furthermore, western blot, luciferase assay and immunoprecipitation were performed to explore the regulated relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC.Results: FUT11 was markedly increased of PC cells in hypoxia, up-regulated in the PC clinical tissues, and predicted a poor outcome. Inhibition of FUT11 reduced PC cell growth and mobility of PC cells under normoxia and hypoxia conditions in vitro, and growth and mobility in vivo. FUT11 bind with PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 knockdown significantly increased the degradation rate of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressiv impacts of FUT11 knockdown on PC cell growth and mobility. In addition, HIF1α bound to the enhancer of FUT11 and increased its expression, as well as co-expressing with FUT11 in PC tissues. Furthermore, overexpress of FUT11 partially rescued the suppressiv effects of HIF1α knockdown on PC cell growth and mobility in hypoxia conditions.Conclusion: Our data further implicate that hypoxia-induced FUT11 in PC contributes to proliferation and metastasis by maintaining the stability of PDK1, and suggest FUT11 maybe a novel and effective target for treatment of pancreatic cancer.


2021 ◽  
Author(s):  
Wenpeng Cao ◽  
Zhirui Zeng ◽  
Zhiwei He ◽  
Runsang Pan ◽  
Hao Wu ◽  
...  

Abstract Background: Hypoxia participated in the occurrence and development of pancreatic cancer (PC). However, genes associated with hypoxia respond and their regulated mechanism in PC cells were unclear. The current research was aimed to illuminate the role and hypoxia regulated mechanism of fucosyltransferase 11 (FUT11) in the progression of PC.Methods: After predicting FUT11 as a key hypoxia associated gene in PC using bioinformatics analysis. The expression of FUT11 in PC using quantitative real-time fluorescent PCR, western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation, migration and invasion under normoxia and hypoxia were detected using Cell Counting Kit 8, 5-ethynyl-2’-deoxyuridine assay, colony formation assay and transwell assay. Spleen capsule injected liver metastasis and subcutaneously injected model were performed to confirm the effects of FUT11 in vivo. Furthermore, western blot, luciferase assay and immunoprecipitation were performed to explore the regulated relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC.Results: FUT11 was markedly increased of PC cells in hypoxia, up-regulated in the PC clinical tissues, and predicted a poor outcome. Inhibition of FUT11 reduced PC cell growth and mobility of PC cells under normoxia and hypoxia conditions in vitro, and growth and mobility in vivo. FUT11 bind with PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 knockdown significantly increased the degradation rate of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressiv impacts of FUT11 knockdown on PC cell growth and mobility. In addition, HIF1α bound to the enhancer of FUT11 and increased its expression, as well as co-expressing with FUT11 in PC tissues. Furthermore, overexpress of FUT11 partially rescued the suppressiv effects of HIF1α knockdown on PC cell growth and mobility in hypoxia conditions.Conclusion: Our data further implicate that hypoxia-induced FUT11 in PC contributes to proliferation and metastasis by maintaining the stability of PDK1, and suggest FUT11 maybe a novel and effective target for treatment of pancreatic cancer.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Wenjing Shang ◽  
Zhongdong Xie ◽  
Fengying Lu ◽  
Daoquan Fang ◽  
Tianbin Tang ◽  
...  

Background. Thioredoxin-1 (Trx-1) is a small redox protein, which plays an important role in many biological processes. Although increased expression of Trx-1 in various solid tumors has been reported, the prognostic significance and function of Trx-1 in human gastric cancer (GC) are still unclear. Here, we investigated the clinical and prognostic significance of Trx-1 expression and the function and mechanism of Trx-1 in human GC. Methods. We analyzed Trx-1 mRNA expression from the GEO database and Trx-1 protein expression in 144 GC tissues using immunohistochemistry. Effects of Trx-1 on GC cell were assessed in vitro and in vivo through Trx-1 knockdown or overexpression. The antitumor effects of the Trx-1 inhibitor, PX-12, on GC cells were investigated. PTEN and p-AKT expressions were evaluated by Western blotting. Results. Increased Trx-1 expression was found in GC tissues and associated with poor prognosis and aggressive clinicopathological characteristics in patients with GC. High Trx-1 expression predicted poor prognosis, and its expression was an independent prognostic factor for overall survival of GC patients. Knockdown of Trx-1 expression inhibited GC cell growth, migration, and invasion in vitro and tumor growth and lung metastasis in vivo. Conversely, overexpression of Trx-1 promoted GC cell growth, migration, and invasion. We also found that PX-12 inhibited GC cell growth, migration, and invasion. Overexpression of Trx-1 caused a decrease in PTEN and increase in p-AKT levels whereas silencing Trx-1 caused an increase in PTEN and decrease in p-AKT levels in GC cells. Inhibition of AKT signaling pathway by MK2206 also inhibited GC cell growth, migration, and invasion. Conclusion. Our results indicate that Trx-1 may be a promising prognostic indicator and therapeutic target for GC patients.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yingfeng Wei ◽  
Sheng Guo ◽  
Jianhua Tang ◽  
Jianjun Wen ◽  
Huifen Wang ◽  
...  

Abstract Background Gastric cancer (GC) remains one of the most common digestive malignancies worldwide and ranked third causes of cancer-related death. Mounting evidence has revealed that miRNAs exert critical regulatory roles in GC development. Methods Immunohistochemistry (IHC) and western blot assay were performed to determine the protein expression levels of neuropilin-1 (NRP1) and mRNA levels were confirmed by quantitative RT-PCR (qRT-PCR) in GC tissues. Kaplan–Meier analysis was performed to evaluate the prognostic value of NRP1 in GC. Knockdown of NRP1 was conducted to analyse its function in vitro and vivo. Luciferase reporter assay, western blot and qRT-qPCR were employed to identify the miRNAs which directly targeted NRP1. Furthermore, Bioinformatics analysis and experimental verification were used to explore the potential molecular mechanism and signalling pathway. Results In the current study, we revealed that NRP1 was highly expressed in GC tumor tissues and was associated with poor prognosis in GC patients. NRP1 knockdown inhibited GC cell growth, migration and invasion in vitro, while suppressed GC xenograft tumor development in vivo. Bioinformatics analysis predicted that miR-19b-3p down-regulated NRP1 expression by targeting its 3′-UTR. Functional assay demonstrated that miR-19b-3p inhibited GC cell growth, migration and invasion via negatively regulating NRP1. Overexpression NRP1 partially reversed the regulatory effect of miR-19b-3p. Moreover, we showed that miR-19b-3p/NRP1 axis regulated the epithelial-to-mesenchymal transition and focal adhesion in GC, which might contribute the GC development and progression. Conclusions Taken together, our findings suggest a regulatory network of miR-19b-3p/NRP1 in GC development. The miR-19b-3p/NRP1 axis might be further explored as a potential diagnostic and therapeutic target in GC.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15554-e15554
Author(s):  
Yanyan Chi ◽  
Feng Wang ◽  
Xiangrui Meng ◽  
Zhengzheng Shan ◽  
Yan Sun ◽  
...  

e15554 Background: Apatinib, a highly selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2), inhibits the angiogenesis of tumors. The function and mechanism of Apatinib in esophageal squamous cell carcinoma (ESCC) remains unknown. Methods: The expression of VEGFR-2 in ESCC cell lines (KYSE450, EC1, KYSE410, KYSE70) were detected by western blot. KYSE450 and EC1 cell lines were treated with Apatinib, or combined with cytotoxic drugs: paclitaxel (TAX), 5-fluorouracil (5-FU) or cisplatin (DDP) respectively. Cell proliferation was then measured using CCK-8 assay; cell apoptosis was analyzed by flow cytometry; cell migration and invasion were evaluated by wound healing and transwell assays. The expression of VEGFR-2, Bcl2, MMP-2/MMP-9, p-Akt and p-mTOR in KYSE450 and EC1 cell lines were determined by western blot. Esophageal cancer xenografts model was established and used to evaluate the antitumor effects of combination of Apatinib and cytotoxic drugs in vivo. Immunohistochemistry was used to detect the expression of Ki67, VEGFR-2 and CD31 in tumor tissues of esophageal cancer xenografts model. Results: We found that Apatinib efficiently inhibited cell growth, metastasis and activity of the Akt/mTOR pathway in ESCC cells. Western blot analysis showed that Apatinib significantly increased Bax protein levels, decreased VEGFR-2, Bcl2, MMP-2/MMP-9, p-Akt and p-mTOR protein levels in ESCC cells. Moreover, Apatinib enhanced chemosensitivity of cytotoxic drugs TAX, 5-FU and DDP by upregulating expression of Bax protein, and downregulating expression of VEGFR-2, Bcl2, MMP-2/MMP-9 protein in vitro. Compared with single agent groups, the combination of Apatinib with each chemotherapeutic drug significantly repressed tumor growth and angiogenesis through blocking the expression of Ki67, VEGFR-2 and CD31 in vivo. Conclusions: Taken together, Apatinib suppressed cell growth, migration and invasion, and promoted antitumor effect of chemotherapeutic agents in ESCC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zechen Zhao ◽  
Weiming Chu ◽  
Yang Zheng ◽  
Chao Wang ◽  
Yuemei Yang ◽  
...  

Abstract Background Eukaryotic translation initiation factor 6 (eIF6), also known as integrin β4 binding protein, is involved in ribosome formation and mRNA translation, acting as an anti-association factor. It is also essential for the growth and reproduction of cells, including tumor cells. Yet, its role in oral squamous cell carcinoma (OSCC) remains unclear. Methods The expression characteristics of eIF6 in 233 samples were comprehensively analyzed by immunohistochemical staining (IHC). Effects of eIF6 over-expression and knockdown on cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. Western blot, immunofluorescence (IF) and co-immunoprecipitation (co-IP) were performed for mechanical verification. Results We found that cytoplasmic eIF6 was abnormally highly expressed in OSCC tissues, and its expression was associated with tumor size and the clinical grade. Amplification of eIF6 promoted the growth, migration and invasion capabilities of OSCC cell lines in vitro and tumor growth in vivo. Through Western blot analysis, we further discovered that eIF6 significantly promotes epithelial-mesenchymal transformation (EMT) in OSCC cells, while depletion of eIF6 can reverse this process. Mechanistically, eIF6 promoted tumor progression by activating the AKT signaling pathway. By performing co-immunoprecipitation, we discovered a direct interaction between endogenous eIF6 and AKT protein in the cytoplasm. Conclusion These results demonstrated that eIF6 could be a new therapeutic target in OSCC, thus providing a new basis for the prognosis of OSCC patients in the future.


Sign in / Sign up

Export Citation Format

Share Document