Apatinib inhibits tumor progression and promotes antitumor efficacy of cytotoxic drugs in esophageal squamous cell carcinoma.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15554-e15554
Author(s):  
Yanyan Chi ◽  
Feng Wang ◽  
Xiangrui Meng ◽  
Zhengzheng Shan ◽  
Yan Sun ◽  
...  

e15554 Background: Apatinib, a highly selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2), inhibits the angiogenesis of tumors. The function and mechanism of Apatinib in esophageal squamous cell carcinoma (ESCC) remains unknown. Methods: The expression of VEGFR-2 in ESCC cell lines (KYSE450, EC1, KYSE410, KYSE70) were detected by western blot. KYSE450 and EC1 cell lines were treated with Apatinib, or combined with cytotoxic drugs: paclitaxel (TAX), 5-fluorouracil (5-FU) or cisplatin (DDP) respectively. Cell proliferation was then measured using CCK-8 assay; cell apoptosis was analyzed by flow cytometry; cell migration and invasion were evaluated by wound healing and transwell assays. The expression of VEGFR-2, Bcl2, MMP-2/MMP-9, p-Akt and p-mTOR in KYSE450 and EC1 cell lines were determined by western blot. Esophageal cancer xenografts model was established and used to evaluate the antitumor effects of combination of Apatinib and cytotoxic drugs in vivo. Immunohistochemistry was used to detect the expression of Ki67, VEGFR-2 and CD31 in tumor tissues of esophageal cancer xenografts model. Results: We found that Apatinib efficiently inhibited cell growth, metastasis and activity of the Akt/mTOR pathway in ESCC cells. Western blot analysis showed that Apatinib significantly increased Bax protein levels, decreased VEGFR-2, Bcl2, MMP-2/MMP-9, p-Akt and p-mTOR protein levels in ESCC cells. Moreover, Apatinib enhanced chemosensitivity of cytotoxic drugs TAX, 5-FU and DDP by upregulating expression of Bax protein, and downregulating expression of VEGFR-2, Bcl2, MMP-2/MMP-9 protein in vitro. Compared with single agent groups, the combination of Apatinib with each chemotherapeutic drug significantly repressed tumor growth and angiogenesis through blocking the expression of Ki67, VEGFR-2 and CD31 in vivo. Conclusions: Taken together, Apatinib suppressed cell growth, migration and invasion, and promoted antitumor effect of chemotherapeutic agents in ESCC.

Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


Author(s):  
Jialing Wen ◽  
Xianglin Liu ◽  
Yan Qi ◽  
Feng Niu ◽  
Zhitong Niu ◽  
...  

Abstract Background BMP3 gene is often found hypermethylated and hence inactivated in several types of cancers including colorectal cancer (CRC), indicating that it has a suppressor role in carcinogenesis. Though BMP3 is a reliable biomarker for screening CRC, the molecular mechanism of BMP3 in carcinogenesis remains largely unknown. Methods The expression level of BMP3 was examined by immunohistochemistry staining and western blot. Methylation-specific PCR (MSP) and real-time quantitative MSP were used to test the hypermethylation status of BMP3 gene. Analyses of BMP3 function in colon cancer cell proliferation, migration, invasion, and apoptosis were performed using HCT116 and KM12 cells. BMP3 was further knocked down or overexpressed in CRC cells, and the effects on cell growth of xenograft tumors in nude mice were assessed. Co-immunoprecipitation and immunofluorescence staining were used to analyze the association between BMP3 and BMPR2 or BMP3 and ActRIIB. Microarray analysis was performed to identify most differentially expressed genes and pathways regulated by BMP3. The BMP3-regulated SMAD2-dependent signaling pathway and TAK1/JNK signal axes were further investigated by quantitative PCR and western blot. Results BMP3 gene was hypermethylated and its expression was downregulated in both CRC tissues and cell lines. Expressing exogenous BMP3 in HCT116 inhibited cell growth, migration, and invasion and increased rate of apoptosis both in vitro and in vivo. However, shRNA-mediated attenuation of endogenous BMP3 in KM12 reversed such inhibitory and apoptotic effects. Furthermore, BMP3 could bind to ActRIIB, an activin type II receptor at the cellular membrane, thereby activating SMAD2-dependent pathway and TAK1/JNK signal axes to regulate downstream targets including caspase-7, p21, and SMAD4 that play crucial roles in cell cycle control and apoptosis. Conclusions Our study reveals a previously unknown mechanism of BMP3 tumor suppression in CRC and provides a rationale for future investigation of BMP3 as a potential target for the development of novel therapeutic agents to fight CRC.


2021 ◽  
Author(s):  
Cheng Ding ◽  
Yatong Li ◽  
Shunda Wang ◽  
Cheng Xing ◽  
Lixin Chen ◽  
...  

Abstract BackgroundPancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with an extremely poor prognosis and a high mortality rate. Genome-wide studies have shown that the SLIT/ROBO signaling pathway plays an important role in pancreatic tumor development and progression. However, the effect and mechanism of ROBO2 in the progression of pancreatic cancer remains largely unknown.MethodsIn this study, real-time polymerase chain reaction (RT-PCR) and western blot analyses were adopted to evaluate the expression level of ROBO2 and proteins in pancreatic cell lines. Cell migration and invasion and cell proliferation were conducted in AsPC-1 and MIA PaCa-2 cell lines. RNA sequencing and western blot were undertaken to explore the mechanisms and potential targeted molecules. ROBO2 expression in tumor tissues was evaluated by immunohistochemistry in 95 patients.ResultsROBO2 expression was downregulated in PDAC cell lines and tissue samples. A high level of ROBO2 was associated with good overall survival. Upregulation of ROBO2 inhibited PDAC cell proliferation, migration, and invasion, whereas the opposite results were found in the ROBO2 downregulation group. In addition, xenograft animal models further confirmed the effect of ROBO2 on proliferation. Finally, the RNA sequencing results indicated that ROBO2 facilitates anti-tumorigenicity partly via inhibiting ECM1 in PDAC. ConclusionsOur work suggests that ROBO2 inhibits tumor progression in PDAC and may serve as a predictive biomarker and therapeutic target in PDAC.


2021 ◽  
Author(s):  
Wenpeng Cao ◽  
Zhirui Zeng ◽  
Runsang Pan ◽  
Zhiwei He ◽  
Hao Wu ◽  
...  

Abstract Background: Hypoxia participated in the occurrence and development of pancreatic cancer (PC). However, genes associated with hypoxia respond and their regulated mechanism in PC cells were unclear. The current research was aimed to illuminate the role and hypoxia regulated mechanism of fucosyltransferase 11 (FUT11) in the progression of PC.Methods: After predicting FUT11 as a key hypoxia associated gene in PC using bioinformatics analysis. The expression of FUT11 in PC using quantitative real-time fluorescent PCR, western blot and immunohistochemistry. The effects of FUT11 on PC cells proliferation, migration and invasion under normoxia and hypoxia were detected using Cell Counting Kit 8, 5-ethynyl-2’-deoxyuridine assay, colony formation assay and transwell assay. Spleen capsule injected liver metastasis and subcutaneously injected model were performed to confirm the effects of FUT11 in vivo. Furthermore, western blot, luciferase assay and immunoprecipitation were performed to explore the regulated relationship among FUT11, hypoxia-inducible factor 1α (HIF1α) and pyruvate dehydrogenase kinase 1 (PDK1) in PC.Results: FUT11 was markedly increased of PC cells in hypoxia, up-regulated in the PC clinical tissues, and predicted a poor outcome. Inhibition of FUT11 reduced PC cell growth and mobility of PC cells under normoxia and hypoxia conditions in vitro, and growth and mobility in vivo. FUT11 bind with PDK1 and regulated the expression PDK1 under normoxia and hypoxia. FUT11 knockdown significantly increased the degradation rate of PDK1 under hypoxia, while treatment with MG132 can relieve the degradation of PDK1 induced by FUT11 knockdown. Overexpression of PDK1 in PC cells under hypoxia conditions reversed the suppressiv impacts of FUT11 knockdown on PC cell growth and mobility. In addition, HIF1α bound to the enhancer of FUT11 and increased its expression, as well as co-expressing with FUT11 in PC tissues. Furthermore, overexpress of FUT11 partially rescued the suppressiv effects of HIF1α knockdown on PC cell growth and mobility in hypoxia conditions.Conclusion: Our data further implicate that hypoxia-induced FUT11 in PC contributes to proliferation and metastasis by maintaining the stability of PDK1, and suggest FUT11 maybe a novel and effective target for treatment of pancreatic cancer.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5198-5198
Author(s):  
Ping Liu ◽  
Dan Ma ◽  
Jishi Wang

Background: Acute lymphoblastic leukaemia (ALL) is one of the most common clonal malignant diseases in children, and it stems from unchecked proliferation of lymphoid progenitor cells. Glucocorticoids (GCs) such as prednisolone and dexamethasone are used as a chemotherapeutic drug in the treatment of ALL. GC-induced cell mortality is first mediated by the activation of glucocorticoid receptor (GR), followed by its translocation into the nucleus to activate or inhibit gene transcription. However, up to ~20% patients with leukemia relapse and become resistant to GCs. Therefore, a better understanding the molecular basis of chemoresistance in ALL would provide novel therapeutic opportunities for patients. Methods: By analyzing the published mRNA expression profiles (GSE5280; GSE94302) obtained from NCBI (https://www.ncbi.nlm.nih.gov/geo/), we found that higher expression of ANXA1 was significantly associated with decreased overall survival of ALL patients. We also examined the expression of ANXA1 at mRNA and protein levels in a variety of ALL cell lines by using qRT-PCR and western blot analyses. The mRNA and protein expression of ANXA1 in ALL cell lines and patients were determined using Real-time PCR and Western blot respectively. Functional assays, such as CCK-8, FACS, and Tunel assay used to determine the oncogenic role of ANXA1 in ALL progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of ANXA1 promotes chemoresistance in ALL cells. Results: The expression of ANXA1 was markedly upregulated in ALL cell lines and patients, and high ANXA1 expression was associated with relapsed/refractory ALL patients. ANXA1 overexpression confers glucocorticoids (GCs) resistance on ALL cells; however, down-regulated of ANXA1 sensitized ALL cell lines to GC both in vitro and in vivo. Additionally, ANXA1 upregulated the levels of FPRs by promoting Wnt/β-catenin signalling. Conclusions: Our findings provided evidence that ANXA1 is a potential therapeutic target for patients with ALL. Targeting ANXA1 signaling may be a promising strategy to enhance GC response during ALL chemo-resistance. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Jing-cai Niu ◽  
Nan Ma ◽  
Wei Liu ◽  
Pei-ji Wang

Recent studies showed that the activation of prostaglandin (PG) receptor EP1 promotes cell migration and invasion in different cancers. The aim of this study was to investigate the role of EP1 in the proliferation of osteosarcoma (OS) cells in vitro and in vivo. EP1 mRNA and protein levels were analyzed by real-time RT-PCR and Western blot, respectively in human OS cell lines MG63, OS732, U-2OS, HOS and SAOS-2 compared to human fetal osteoblastic hFOB 1.19 cells. MG63 cells were treated with PGE2, EP1 specific agonist 17-PT-PGE2, 17-PT-PGE2 + EP1 specific antagonist SC51089, or DMSO (control). EP1R-siRNA or a non-silencing irrelevant RNA duplex (negative control) were used for the transfection of MG63 cells, followed by PGE2 treatment. Nude mice carrying MG63 xenografts were treated with SC51089 (2 mg/kg/day). MG63 cells/xenografts were analyzed by MTT assay, TUNEL assay, PKC enzyme activity assay, and Western blot (EP1 and apoptotic proteins), and tumor growth/volume was evaluated in mice. EP1 levels were significantly higher in OS cells compared to osteoblasts. PGE2 or 17-PT-PGE2 treatment increased the proliferation and decreased the apoptosis of MG63 cells. Inhibition of EP1 by SC51089 or siRNA markedly decreased the viability of MG63 cells. Similarly, SC51089 treatment significantly inhibited MG63 cell proliferation and promoted apoptosis in vivo. The silencing of EP1 receptor by siRNA or blockade of EP1 signaling by SC51089 activated extrinsic and intrinsic apoptotic pathways both in vivo and in vitro, as evidenced by increased levels of Bax, cyt-c, cleaved caspase-3, caspase-8 and caspase-9. EP1 appears to be involved in PGE2-induced proliferative activity of MG63 cells. Antagonizing EP1 may provide a novel therapeutic approach to the treatment of OS.


2022 ◽  
Author(s):  
Bingbing Yang ◽  
Xiane Zhang ◽  
Hao Zhou ◽  
Xiaoyan Zhang ◽  
Wanjing Yang ◽  
...  

Abstract Background: Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive tract, which is very harmful to human health. The JAK-STAT signaling pathway is a recognized carcinogenic pathway that plays a role in the proliferation, apoptosis, migration, and invasion of a variety of cancer cells. Some studies have shown that the activation status of STAT3 affects the expression of KIRREL3. However, the expression of KIRREL3 in ESCC and its relationship with KIRREL3 or the JAK-STAT signaling pathway is still unclear.Methods: In this study, we used immunohistochemistry and western blotting to analyze the protein expression levels of KIRREL3 in tumor tissues and ESCC cell lines. We applied proliferation assays, plate clone formation assays, Transwell assays, flow cytometry analysis, and CDX animal models to examine the role of KIRREL3 in ESCC.Results: The results indicate that KIRREL3 is highly expressed to varying degrees in ESCC tissues and cell lines. Knocking down KIRREL3 expression in ESCC cells could correspondingly inhibit cell proliferation, colony formation, invasion, and migration, and had some effects on cell cycle progression and apoptosis. In addition, overexpressing KIRREL3 in these cells had opposite effects. Tumor formation in nude mice experiments also confirmed that KIRREL3 is involved in the growth of ESCC cells in vivo.Conclusions: These data suggest that KIRREL3 plays a key role in the development of ESCC, and KIRREL3 is a potential new target for the early diagnosis and clinical treatment of this disease.


2021 ◽  
Author(s):  
Wenjin Qiu ◽  
Xiaomin Cai ◽  
Kaya Xu ◽  
Shibin Song ◽  
Zumu Xiao ◽  
...  

Abstract Background Regenerating liver phosphatase 1 (PRL1) is an established oncogene in various cancers, although its biological functions and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Methods PRL1 expression levels were analyzed in glioma tissues and cell lines. Multiple glioma cell lines were transfected with PRL1-overexpressing and shRNA constructs. In vitro proliferation, migration and invasion assays were conducted. Western blot and ubiquitylation assays were performed for molecular and mechanistic analyses. PRL1 expression levels were correlated with downstream ubiquitin pathway and clinical parameters using archival GBM samples. Results PRL1 was significantly upregulated in glioma tissues and cell lines, and positively correlated with the tumor grade. Ectopic expression of PRL1 in glioma cell lines significantly enhanced their tumorgenicity and invasion both in vitro and in vivo by promoting EMT. Conversely, knocking down PRL1 blocked EMT in the GBM cells, and inhibited their invasion, migration and tumorigenic growth. PRL1 also stabilized Snail2 through deubiquitination by activating USP36. Snail2 was identified as a crucial mediator of the oncogenic effects of PRL1 in GBM. Finally, PRL1 protein levels were positively correlated with that of Snail2 and predicted poor outcome of GBMs. Conclusions PRL1 promotes GBM progression by activating USP36-mediated Snail2 deubiquitination. This novel PRL1/USP36/Snail2 axis may be a promising therapeutic target for glioblastoma.


2021 ◽  
Author(s):  
Yuanzhou Zhang ◽  
Shunshun Liang ◽  
Bowen Xiao ◽  
Jingying Hu ◽  
Yechun Pang ◽  
...  

Abstract Background: EGFR-TKIs are prone to develop acquired drug resistance in colorectal cancer and are only applicable in Kras wild type colorectal cancer patients. This study aimed to determine the reasons for the poor treatment efficacy of TKIs in Kras mutant CRC and to improve the treatment effect. Method: The RTK Phosphorylation Membrane array was used to detect and screen changes in phosphorylated protein levels in KRAS mutant-resistant CRC cells. qRT-PCR, western blot and TCGA database were applied for reporting the expression of ERGR and ErbB3 in CRC. Luciferase reporter and western blot examined the network of miR-323a-3p. RTCA, colony formation, CCK-8, caspase-3/7 activity and Flow cytometry probed the impacts of miR-323a-3p on CRC cell growth.Results: We illustrated that ErbB3 and EGFR were activated in gefitinib-resistant Kras mutant colorectal cancer cell lines. ErbB3 is highly expressed in Kras mutant patient tissues, and patients with ErbB3high/EGFRhigh had a poorer prognosis. Mechanically, We found and verified that the tumor suppressor miR-323a-3p simultaneously directly targeted EGFR/ErbB3 and inhibited tumor cell growth by activating the apoptosis pathway. Further functionality studies identified miR-323a-3p synergized with gefitinib to inhibit tumor growth, and this synergy prevented the development of acquired resistance to gefitinib in CRC cell lines.Conclusion: Accordingly, these data indicate that Kras mutant CRC TKI resistance occurs due to the activation of EGFR and ErbB3. Thus, miR-323a-3p has the potential to treat Kras-mutated colorectal cancer by targeting ErbB3/EGFR.


Sign in / Sign up

Export Citation Format

Share Document