scholarly journals Nicotinamide inhibits melanoma in vitro and in vivo

Author(s):  
Francesca Scatozza ◽  
Federica Moschella ◽  
Daniela D’Arcangelo ◽  
Stefania Rossi ◽  
Claudio Tabolacci ◽  
...  

Abstract Background Even though new therapies are available against melanoma, novel approaches are needed to overcome resistance and high-toxicity issues. In the present study the anti-melanoma activity of Nicotinamide (NAM), the amide form of Niacin, was assessed in vitro and in vivo. Methods Human (A375, SK-MEL-28) and mouse (B16-F10) melanoma cell lines were used for in vitro investigations. Viability, cell-death, cell-cycle distribution, apoptosis, Nicotinamide Adenine Dinucleotide+ (NAD+), Adenosine Triphosphate (ATP), and Reactive Oxygen Species (ROS) levels were measured after NAM treatment. NAM anti-SIRT2 activity was tested in vitro; SIRT2 expression level was investigated by in silico transcriptomic analyses. Melanoma growth in vivo was measured in thirty-five C57BL/6 mice injected subcutaneously with B16-F10 melanoma cells and treated intraperitoneally with NAM. Interferon (IFN)-γ-secreting murine cells were counted with ELISPOT assay. Cytokine/chemokine plasmatic levels were measured by xMAP technology. Niacin receptors expression in human melanoma samples was also investigated by in silico transcriptomic analyses. Results NAM reduced up to 90% melanoma cell number and induced: i) accumulation in G1-phase (40% increase), ii) reduction in S- and G2-phase (about 50% decrease), iii) a 10-fold increase of cell-death and 2.5-fold increase of apoptosis in sub-G1 phase, iv) a significant increase of NAD+, ATP, and ROS levels, v) a strong inhibition of SIRT2 activity in vitro. NAM significantly delayed tumor growth in vivo (p ≤ 0.0005) and improved survival of melanoma-bearing mice (p ≤ 0.0001). About 3-fold increase (p ≤ 0.05) of Interferon-gamma (IFN-γ) producing cells was observed in NAM treated mice. The plasmatic expression levels of 6 cytokines (namely: Interleukin 5 (IL-5), Eotaxin, Interleukin 12 (p40) (IL12(p40)), Interleukin 3 (IL-3), Interleukin 10 (IL-10) and Regulated on Activation Normal T Expressed and Secreted (RANTES) were significantly changed in the blood of NAM treated mice, suggesting a key role of the immune response. The observed inhibitory effect of NAM on SIRT2 enzymatic activity confirmed previous evidence; we show here that SIRT2 expression is significantly increased in melanoma and inversely related to melanoma-patients survival. Finally, we show for the first time that the expression levels of Niacin receptors HCAR2 and HCAR3 is almost abolished in human melanoma samples. Conclusion NAM shows a relevant anti-melanoma activity in vitro and in vivo and is a suitable candidate for further clinical investigations.

1996 ◽  
Vol 135 (6) ◽  
pp. 1889-1898 ◽  
Author(s):  
D Schadendorf ◽  
M A Kern ◽  
M Artuc ◽  
H L Pahl ◽  
T Rosenbach ◽  
...  

Human malignant melanoma is notoriously resistant to pharmacological modulation. We describe here for the first time that the synthetic retinoid CD437 has a strong dose-dependent antiproliferative effect on human melanoma cells (IC50: 5 x 10(-6) M) via the induction of programmed cell death, as judged by analysis of cell morphology, electron microscopical features, and DNA fragmentation. Programmed cell death was preceded by a strong activation of the AP-1 complex in CD437-treated cells as demonstrated by gel retardation and chloramphenicol transferase (CAT) assays. Northern blot analysis showed a time-dependent increase in the expression of c-fos and c-jun encoding components of AP-1, whereas bcl-2 and p53 mRNA levels remained constant. CD437 also exhibited a strong growth inhibitory effect on MeWo melanoma cells in a xenograft model. In tissue sections of CD437-treated MeWo tumors from these animals, apoptotic melanoma cells and c-fos overexpressing cells were colocalized by TdT-mediated deoxyuridine triphosphate-digoxigenin nick end labeling (TUNEL) staining and in situ hybridization. Taken together, this report identifies CD437 as a retinoid that activates and upregulates the transcription factor AP-1, leading eventually to programmed cell death of exposed human melanoma cells in vitro and in vivo. Further studies are needed to evaluate whether synthetic retinoids such as CD437 represent a new class of retinoids, which may open up new ways to a more effective therapy of malignant melanoma.


2008 ◽  
Vol 20 (1) ◽  
pp. 82
Author(s):  
M. Paczkowski ◽  
C. Bidwell ◽  
D. Spurlock ◽  
J. Waddell ◽  
R. L. Krisher

The in vitro culture environment significantly impacts nuclear maturation, fertilization, embryonic development, and epigenetic competence; however, our knowledge of the effects of in vitro maturation on oocyte developmental competence, and specifically cytoplasmic maturation, is limited. The objective of this experiment was to identify alterations in the transcriptome of oocytes matured in vitro compared to those matured in vivo that correlate to developmental competence. Immature oocytes were collected from Day 26 and 7-8-week-old B6D2F1 mice 48 h post-pregnant mare serum gonadotropin (PMSG) administration and matured for 16 h in Gmat supplemented with 0.5 mm citric acid, 0.5 mm cysteamine, 100 ng mL–1 epidermal growth factor (EGF), 0.05% insulin-transferrin-selenium (ITS; v/v), 0.01% recombumin (v/v) and 2 mg mL–1 fetuin. In vivo-matured oocytes from females of the same ages were collected from the oviducts 62 h post-PMSG and 14 h post-hCG and mating to vasectomized males. In vivo- and in vitro-matured oocytes were identified visually by the presence of the first polar body. Mature oocytes were pooled into three groups of 150 oocytes per treatment and lysed; poly A+ RNA was extracted. Samples were processed through two cycles of linear amplification and hybridized to the GeneChip� Mouse Genome 430 2.0 Array (Affymetrix, Inc., Santa Clara, CA, USA), with three arrays per treatment. Microarray data were sorted and filtered to include genes that were classified as having two present calls per treatment. The data were then normalized to the chip median and analyzed using a one-way analysis of variance; the level of significance was calculated at P < 0.01. In total, 2.17% (482/22170) and 1.61% (358/22170) of genes were differentially expressed between in vitro- and in vivo-matured oocytes in Day 26 and 7–8-week-old mice, respectively. However, 72.82% (351/482) and 67.87% (243/358) of differentially expressed genes had increased abundance in the in vitro- and in vivo-matured oocytes, respectively. Transcripts involved in gene expression, cellular growth and proliferation, and cellular development were increased in in vivo-matured oocytes from both age groups compared to those matured in vitro. Cell death was one of the higher ranking functional groups increased in the 7–8-week-old in vitro-matured oocytes compared to the 7–8-week-old in vivo-matured oocytes. Specific genes altered by in vitro maturation conditions in Day 26 oocytes were DNA methyltransferase 1 (>7-fold increase in vivo), caspase 8 (>4-fold increase in vivo), and eukaryotic translation initiation factor 1B (>4-fold increase in vivo). DNA methyltransferase 1 and ubiquitin-conjugating enzyme E2T were significantly increased in in vivo-matured 7–8-week-old oocytes (>3-fold and >5-fold, respectively). These results indicate that gene expression is altered in oocytes matured in vitro compared to those matured in vivo. Based on the functional annotations of genes differentially expressed, dysregulation of gene expression in the oocyte resulting in altered DNA methylation and an up-regulation in cell death pathways are potential developmental mechanisms influenced by in vitro culture conditions that correlate to reduced embryonic developmental potential.


BMC Cancer ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Mélissa Labelle-Côté ◽  
Julie Dusseault ◽  
Salma Ismaïl ◽  
Aude Picard-Cloutier ◽  
Peter M Siegel ◽  
...  

2004 ◽  
Vol 286 (1) ◽  
pp. L4-L14 ◽  
Author(s):  
Olivier Lesur ◽  
Marcel Brisebois ◽  
Alexandre Thibodeau ◽  
Frédéric Chagnon ◽  
Denis Lane ◽  
...  

In the present study, IFN-γ exposure to primary cultures of rat type II epithelial cells (TIIP) upregulated membrane expression of the common γ-chain of the IL-2 receptor (∼2.5- to 4-fold increase) and redistributed receptor affinity in TIIP, as assessed by Western blot, cell, and tissue histochemistry and Scatchard analysis. As for restitution processes of the lung epithelium, functionality of IL-2R on TIIP was conditional to IFN-γ exposure: 1) IFN-γ priming promoted a fivefold increase of IL-2-driven TIIP locomotion ( P < 0.05 vs. control at 100 U/ml) and 2) IFN-γ coincubation with IL-2 reduced bleomycin-induced TIIP apoptosis in vitro by 25% (caspase-3 activity) and by ∼70% (TdT-mediated dUTP nick end labeling/4′,6′-diamidino-2-phenylindole assay) as well as in vivo by ∼90% (caspase-3 activity; P < 0.05 vs. control). Sustained p42/44 extracellular signal-regulated kinase activity played a protective role in this process, whereas specific inhibition by PD-98059 (50 μM) significantly reversed bleomycin-induced TIIP apoptosis ( P < 0.05 vs. control). From these in vitro and in vivo data, it is proposed that combinations of IFN-γ and IL-2 can drive repair activity of TIIP by stimulating migration and preventing programmed cell death, both of which are speculated to be very fast restitution events after oxidant-induced acute lung injury.


2007 ◽  
Vol 30 (4) ◽  
pp. 79
Author(s):  
Sagar Dugani ◽  
Annie Paquin ◽  
David R. Kaplan ◽  
Freda D. Miller

Background: The protein p63, a recently discovered member of the p53 family of proteins, is implicated in the maintenance and differentiation of stem cells in the epidermis and is involved in the regulation of naturally-occurring cell death in sympathetic neurons of the peripheral nervous system. Since initial data from our laboratory indicated that p63 is also widely expressed in stem cells and neurons within the developing brain, we assessed its involvement in regulating the genesis and survival of developing cortical neurons. As neurogenesis is initiated at embryonic day 12 (E12), we isolated cortical precursors from p63-/- embryos at E14 and cultured them for 2 days in vitro (DIV). Methods: Based on immunocytochemistry to known markers of apoptosis and neurons, we assessed the level of cell death and neurogenesis. Results: Compared to p63+/+ cortical precursors, p63-/- precursors from littermates showed a 50 % reduction in neuronal death, as assessed by the apoptosis marker, cleaved caspase 3. Interestingly, the proportion of neurons and astrocyte precursors, the latter identified by S100b was also reduced in p63-/- embryos, as compared to p63+/+ littermates. Conclusions: These results suggest that p63 may be involved in the regulation of cell survival and in the differentiation of precursors into neurons and astrocytes. To assess the former, we overexpressed TAp63a, a full-length isoform of p63, in E12/13 cortical precursors and assessed the level of cell death after 2 DIV. Compared to control cells, cells transfected with TAp63a demonstrated a 2-fold increase in cell death. Ongoing work will characterize p63 involvement in differentiation of precursor cells into neurons and astrocytes. To assess if these findings are relevant in vivo, we will use p63flox,flox X Nextin-Cre mice, which have p63 specifically ablated in neural precursors. We will analyze the survival, proliferation, and fate of these p63-/- cells. Together, these studies will help to determine a role for p63 in neural proliferation and apoptosis, processes central to development and response to injury.


2017 ◽  
Vol 114 (43) ◽  
pp. 11482-11487 ◽  
Author(s):  
Madhuchhanda Kundu ◽  
Avik Roy ◽  
Kalipada Pahan

Cancer cells are adept at evading cell death, but the underlying mechanisms are poorly understood. IL-12 plays a critical role in the early inflammatory response to infection and in the generation of T-helper type 1 cells, favoring cell-mediated immunity. IL-12 is composed of two different subunits, p40 and p35. This study underlines the importance of IL-12 p40 monomer (p40) in helping cancer cells to escape cell death. We found that different mouse and human cancer cells produced greater levels of p40 than p40 homodimer (p402), IL-12, or IL-23. Similarly, the serum level of p40 was much greater in patients with prostate cancer than in healthy control subjects. Selective neutralization of p40, but not p402, by mAb stimulated death in different cancer cells in vitro and in vivo in a tumor model. Interestingly, p40 was involved in the arrest of IL-12 receptor (IL-12R) IL-12Rβ1, but not IL-12Rβ2, in the membrane, and that p40 neutralization induced the internalization of IL-12Rβ1 via caveolin and caused cancer cell death via the IL-12–IFN-γ pathway. These studies identify a role of p40 monomer in helping cancer cells to escape cell death via suppression of IL-12Rβ1 internalization.


2019 ◽  
Vol 10 (2) ◽  
pp. 703-712 ◽  
Author(s):  
Xin Yao ◽  
Wei Jiang ◽  
Danhong Yu ◽  
Zhaowei Yan

Since the incidence rate of malignant melanoma is increasing annually, development of drugs against melanoma cell metastasis has become more urgent.


Sign in / Sign up

Export Citation Format

Share Document