scholarly journals Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Li Wang ◽  
Xin Wang ◽  
Zhi-Qiang He ◽  
Si-Jie Zhou ◽  
Li Xu ◽  
...  

Abstract Background Stress tolerance is one of the important desired microbial traits for industrial bioprocesses, and global regulatory protein engineering is an efficient approach to improve strain tolerance. In our study, IrrE, a global regulatory protein from the prokaryotic organism Deinococcus radiodurans, was engineered to confer yeast improved tolerance to the inhibitors in lignocellulose hydrolysates or high temperatures. Results Three IrrE mutations were developed through directed evolution, and the expression of these mutants could improve the yeast fermentation rate by threefold or more in the presence of multiple inhibitors. Subsequently, the tolerance to multiple inhibitors of single-site mutants based on the mutations from the variants were then evaluated, and 11 mutants, including L65P, I103T, E119V, L160F, P162S, M169V, V204A, R244G, Base 824 Deletion, V299A, and A300V were identified to be critical for the improved representative inhibitors, i.e., furfural, acetic acid and phenol (FAP) tolerance. Further studies indicated that IrrE caused genome-wide transcriptional perturbation in yeast, and the mutant I24 led to the rapid growth of Saccharomyces cerevisiae by primarily regulating the transcription level of transcription activators/factors, protecting the intracellular environment and enhancing the antioxidant capacity under inhibitor environments, which reflected IrrE plasticity. Meanwhile, we observed that the expression of the wild-type or mutant IrrE could also protect Saccharomyces cerevisiae from the damage caused by thermal stress. The recombinant yeast strains were able to grow with glucose at 42 ℃. Conclusions IrrE from Deinococcus radiodurans can be engineered as a tolerance-enhancer for Saccharomyces cerevisiae. Systematic research on the regulatory model and mechanism of a prokaryotic global regulatory factor IrrE to increase yeast tolerance provided valuable insights for the improvements in microbial tolerance to complex industrial stress conditions.

2020 ◽  
Author(s):  
Li Wang ◽  
Xin Wang ◽  
Zhi-Qiang He ◽  
Si-Jie Zhou ◽  
Li Xu ◽  
...  

Abstract Background: Stress tolerance is one of the important desired microbial traits for industrial bioprocess and global regulatory protein engineering is an efficient approach to improve strain tolerance. In our study, IrrE, a global regulatory protein from prokaryotic organism Deinococcus radiodurans, was engineered to confer yeast the improved tolerance to the inhibitors in lignocellulose hydrolysates or high temperature.Results: Three IrrE mutants were developed through directed evolution and the expression of these mutants could improve the yeast fermentation rate by 3- to 4-fold in the presence of multiple inhibitors. Subsequently, the tolerance to multiple inhibitors of single-site mutants based on the mutations from the variants was then evaluated, and eleven mutants including L65P, I103T, E119V, L160F, P162S, M169V, V204A, R244G, Base 824 Deletion, V299A and A300V were identified to be critical for the improved FAP tolerance. Further studies indicated that IrrE caused genome-wide transcriptional perturbation in yeast, and the mutant I24 led to the rapid growth of Saccharomyces cerevisiae mainly by regulating the transcription level of transcription activators/factors, protecting the intracellular environment and enhancing the antioxidant capacity under inhibitor environment, which reflected the plasticity of IrrE. Meanwhile, we observed that the expression of the wild-type or mutant IrrE could also protect Saccharomyces cerevisiae from the damage caused by thermal stress. The recombinant yeast strains were able to grow with glucose at 42 ºC.Conclusions: IrrE from Deinococcus radiodurans can be engineered as a tolerance-enhancer for Saccharomyces cerevisiae. Systematic research on the regulatory model and mechanism of a prokaryotic global regulatory factor IrrE to increase yeast tolerance provided valuable insights for the improvement of microbial tolerance to complex industrial stress conditions.


2020 ◽  
Author(s):  
Li Wang ◽  
Xin Wang ◽  
Zhi-Qiang He ◽  
Si-Jie Zhou ◽  
Li Xu ◽  
...  

Abstract BackgroundStress tolerance is one of the important desired microbial traits for industrial bioprocesses, and global regulatory protein engineering is an efficient approach to improve strain tolerance. In our study, IrrE, a global regulatory protein from the prokaryotic organism Deinococcus radiodurans, was engineered to confer yeast the improved tolerances to the inhibitors in lignocellulose hydrolysates or high temperatures.ResultsThree IrrE mutations were developed through directed evolution, and the expression of these mutants could improve the yeast fermentation rate by 3-fold or more in the presence of multiple inhibitors. Subsequently, the tolerance to multiple inhibitors of single-site mutants based on the mutations from the variants were then evaluated, and eleven mutants, including L65P, I103T, E119V, L160F, P162S, M169V, V204A, R244G, Base 824 Deletion, V299A, and A300V were identified to be critical for the improved representative inhibitors, i.e., furfural, acetic acid and phenol (FAP) tolerance. Further studies indicated that IrrE caused genome-wide transcriptional perturbation in yeast, and the mutant I24 led to the rapid growth of Saccharomyces cerevisiae by primarily regulating the transcription level of transcription activators/factors, protecting the intracellular environment and enhancing the antioxidant capacity under inhibitor environments, which reflected IrrE plasticity. Meanwhile, we observed that the expression of the wild-type or mutant IrrE could also protect Saccharomyces cerevisiae from the damage caused by thermal stress. The recombinant yeast strains were able to grow with glucose at 42 ºC.ConclusionsIrrE from Deinococcus radiodurans can be engineered as a tolerance-enhancer for Saccharomyces cerevisiae. Systematic research on the regulatory model and mechanism of a prokaryotic global regulatory factor IrrE to increase yeast tolerance provided valuable insights for the improvements in microbial tolerance to complex industrial stress conditions.


2016 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Titin Yulinery ◽  
Ratih M.Dewi

Tes kemampuan adalah salah satu kegiatan penting dalam pengendalian mutu dan jaminan kualitas mikrobiologi laboratorium untuk mengukur kompetensi analis dan analisis uji profisiensi membutuhkan persiapan Model mikroorganisme adalah kualitas standar dan validitas. Mikrobiologi uji kualitas produk kedelai utama diarahkan pada kehadiran Saccharomyces cerevisiae ragi (S. cerevisiae), S. Bailli, S. rouxii dankontaminan bakteri seperti Bacillus dan Deinococcus. Jenis ragi dan bakteri yang terlibat dalam proses dan dapat menjadi salah satu parameter kualitas penting dalam persiapan yang dihasilkan. Jumlah dan viabilitas bakteri dan ragi menjadi parameter utama dalam proses persiapan bahan uji. Jumlah tersebut adalah jumlah minimum yang berlaku dapat dianalisis. Jumlah ini harus dibawah 10 CFU diperlukan untuk menunjukkan tingkat hygienitas proses dan tingkat minimal kontaminasi. Viabilitas bakteri dan bahan tes ragi persiapan untuk tes kemahiran kecap yang diawetkan dengan L-pengeringan adalah teknik Deinococcus radiodurans (D. radiodurans) 16 tahun, 58 tahun S. cerevisiae, dan S. roxii 13 tahun. kata kunci: Viabilitas, Deinococcus, khamir, L-pengeringan, Proficiency AbstractProficiency test is one of the important activities in quality control and quality assurance microbiology laboratory for measuring the competence of analysts and analysis Proficiency test requires a model microorganism preparations are standardized quality and validity. Microbiological test of the quality of the main soy products aimed at thepresence of yeast Saccharomyces cerevisiae (S. cerevisiae), S. bailli, S. rouxii and bacterial contaminants such as Bacillus and Deinococcus. Types of yeasts and bacteria involved in the process and can be one of the important quality parameters in the preparation produced. The number and viability of bacteria and yeasts become themain parameters in the process of test preparation materials. The amount in question is the minimum number that is valid can be analyzed. This amount must be below 10 CFU required to indicate the level of hygienitas process and the minimum level of contamination. Viability of bacteria and yeast test preparation materials for proficiencytest of soy sauce that preserved by L-drying technique is Deinococcus radiodurans ( D. radiodurans ) 16 years, 58 years S. cerevisiae, and S. roxii 13 years. key words : Viability, Deinococcus, Khamir, L-drying, Proficiency


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Antt Htet Wai ◽  
Muhammad Waseem ◽  
A B M Mahbub Morshed Khan ◽  
Ujjal Kumar Nath ◽  
Do Jin Lee ◽  
...  

Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Xuejiao Jin ◽  
Jie Zhang ◽  
Tingting An ◽  
Huihui Zhao ◽  
Wenhao Fu ◽  
...  

Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 219
Author(s):  
Il-Sup Kim ◽  
Woong Choi ◽  
Jonghyeon Son ◽  
Jun Hyuck Lee ◽  
Hyoungseok Lee ◽  
...  

The cryoprotection of cell activity is a key determinant in frozen-dough technology. Although several factors that contribute to freezing tolerance have been reported, the mechanism underlying the manner in which yeast cells respond to freezing and thawing (FT) stress is not well established. Therefore, the present study demonstrated the relationship between DaMDHAR encoding monodehydroascorbate reductase from Antarctic hairgrass Deschampsia antarctica and stress tolerance to repeated FT cycles (FT2) in transgenic yeast Saccharomyces cerevisiae. DaMDHAR-expressing yeast (DM) cells identified by immunoblotting analysis showed high tolerance to FT stress conditions, thereby causing lower damage for yeast cells than wild-type (WT) cells with empty vector alone. To detect FT2 tolerance-associated genes, 3′-quant RNA sequencing was employed using mRNA isolated from DM and WT cells exposed to FT (FT2) conditions. Approximately 332 genes showed ≥2-fold changes in DM cells and were classified into various groups according to their gene expression. The expressions of the changed genes were further confirmed using western blot analysis and biochemical assay. The upregulated expression of 197 genes was associated with pentose phosphate pathway, NADP metabolic process, metal ion homeostasis, sulfate assimilation, β-alanine metabolism, glycerol synthesis, and integral component of mitochondrial and plasma membrane (PM) in DM cells under FT2 stress, whereas the expression of the remaining 135 genes was partially related to protein processing, selenocompound metabolism, cell cycle arrest, oxidative phosphorylation, and α-glucoside transport under the same condition. With regard to transcription factors in DM cells, MSN4 and CIN5 were activated, but MSN2 and MGA1 were not. Regarding antioxidant systems and protein kinases in DM cells under FT stress, CTT1, GTO, GEX1, and YOL024W were upregulated, whereas AIF1, COX2, and TRX3 were not. Gene activation represented by transcription factors and enzymatic antioxidants appears to be associated with FT2-stress tolerance in transgenic yeast cells. RCK1, MET14, and SIP18, but not YPK2, have been known to be involved in the protein kinase-mediated signalling pathway and glycogen synthesis. Moreover, SPI18 and HSP12 encoding hydrophilin in the PM were detected. Therefore, it was concluded that the genetic network via the change of gene expression levels of multiple genes contributing to the stabilization and functionality of the mitochondria and PM, not of a single gene, might be the crucial determinant for FT tolerance in DaMDAHR-expressing transgenic yeast. These findings provide a foundation for elucidating the DaMDHAR-dependent molecular mechanism of the complex functional resistance in the cellular response to FT stress.


Sign in / Sign up

Export Citation Format

Share Document