scholarly journals T helper cells in synovial fluid of patients with rheumatoid arthritis primarily have a Th1 and a CXCR3+Th2 phenotype

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Jonathan Aldridge ◽  
Anna-Karin H. Ekwall ◽  
Linda Mark ◽  
Beatrice Bergström ◽  
Kerstin Andersson ◽  
...  

Abstract Background The majority of CD4+ T helper (Th) cells found in the synovial fluid (SF) of patients with rheumatoid arthritis (RA) express CXCR3, a receptor associated with Th1 cells. In blood, subsets of Th2 and Th17 cells also express CXCR3, but it is unknown if these cells are present in RA SF or how cytokines from these subsets affect cytokine/chemokine secretion by fibroblast-like synoviocytes (FLS) from patients with RA. Methods We examined the proportions of Th1, Th2, CXCR3+Th2, Th17, CXCR3+Th17, Th1Th17, peripheral T helper (TPh) and T follicular helper (TFh) cells in paired SF and blood, as well as the phenotype of TPh and TFh cells in RA SF (n = 8), by the use of flow cytometry. We also examined the cytokine/chemokine profile in paired SF and plasma (n = 8) and in culture supernatants of FLS from patients with chronic RA (n = 7) stimulated with Th-associated cytokines, by the use of cytometric bead arrays and ELISA. Cytokine receptor expression in FLS (n = 3) were assessed by the use of RNA sequencing and qPCR. Results The proportions of Th1 and CXCR3+Th2 cells were higher in SF than in blood (P < 0.05). TPh and PD-1highTFh in RA SF were primarily of a Th1 and a CXCR3+Th2 phenotype. Moreover, the levels of CXCL9, CXCL10, CCL20, CCL2, CXCL8, IL-6 and IL-10 were higher in SF than in plasma (P < 0.05). Lastly, IL-4, IL-13 and IL-17A induced RA FLS to secrete proinflammatory IL-6, CCL2, CXCL1 and CXCL8, while IFNγ mainly induced CXCL10. Conclusion These findings indicate that not only Th1 but also CXCR3+Th2 cells may have a pathogenic role in RA synovial inflammation.

2021 ◽  
Author(s):  
Ying Lu ◽  
Chongbo Hao ◽  
Shanshan Yu ◽  
Zuan Ma ◽  
Xuelian Fu ◽  
...  

Abstract Background: Abnormal proliferation of fibroblast-like synoviocytes (FLSs) in the synovial lining layer is the primary cause of synovial hyperplasia and joint destruction in rheumatoid arthritis (RA). Currently, the relationship between metabolic abnormalities and FLS proliferation is a new focus of investigation. However, little is known regarding the relationship between amino acid metabolism and RA. Methods: The concentrations of amino acids and cytokines in the synovial fluid of RA (n=9) and osteoarthritis (OA,n=9) were detected by LC-MS/MS and CBA assay, respectively. The mRNA and protein expression of CAT-1 were determined in FLSs isolated from RA and OA patients by real-time PCR and western blotting. MTT assay, cell cycle, apoptosis, invasion and cytokine secretion were determined in FLSs knocked down of CAT-1 using siRNA or treated with D-arginine under normoxic and hypoxic culture conditions. A mouse collagen-induced arthritis (CIA) model was applied to test the therapeutic potential of blocking the uptake of L-arginine in vivo.Results: L-arginine was upregulated in the synovial fluid of RA patients and was positively correlated with elevation of the cytokines IL-1β, IL-6 and IL-8. Further examination demonstrated that cationic amino acid transporter-1 (CAT-1) was the primary transporter for L-arginine and was overexpressed on RA FLSs compared to OA FLSs. Moreover, knockdown of CAT-1 using siRNA or inhibition of L-arginine uptake using D-arginine significantly suppressed L-arginine metabolism, cell proliferation, migration and cytokine secretion in RA FLSs under normoxic and hypoxic culture conditions in vitro but increased cell apoptosis in a dose-dependent manner. Meanwhile, in vivo assays revealed that an L-arginine-free diet or blocking the uptake of L-arginine using D-arginine suppressed arthritis progression in CIA mice. Conclusion: CAT-1 is upregulated and promotes FLS proliferation by taking up L-arginine, thereby promoting RA progression.


2021 ◽  
Author(s):  
Ying Zhang ◽  
Lingying Niu ◽  
Fan Wang ◽  
Xiaojun Tang ◽  
Chun Wang ◽  
...  

ABSTRACT Objectives Systemic lupus erythematosus (SLE) is characterised by accumulated cell apoptosis. Vitamin D receptor (VDR) has immunomodulatory effect and potent anti-apoptosis activities. The aim of this study was to examine the correlation between CD4+T cells VDR expression, cell apoptosis, and disease activity in patients with SLE. Methods Forty-five SLE patients were recruited and 50 healthy individuals served as controls. The expression of VDR in CD4+T cells and their subsets were determined by flow cytometry. The correlations between VDR expression and cell apoptosis or disease parameters in SLE patients were analysed. Results VDR expression in CD4+T cells and their subsets were upregulated in SLE patients, especially in help T (Th)1, regulatory T (Treg), and follicular helper T (Tfh) cells. Frequency of VDR-positive CD4+T cells was positively associated with SLE disease activity index (SLEDAI)-2K values and inversely correlated with serum C3 concentration. The frequency of VDR-positive CD4+T cells, Th1 cells, Th2 cells, Th17 cells, Treg cells, and Tfh cells was positively correlated with cells apoptosis. Conclusion VDR expression in CD4+T cells and their subsets were increased in SLE. VDR expression was positively associated with disease activity and cell apoptosis in SLE patients.


Author(s):  
Amania A. Sheikh ◽  
Joanna R. Groom

Abstract During viral infection, immune cells coordinate the induction of inflammatory responses that clear infection and humoral responses that promote protection. CD4+ T-cell differentiation sits at the center of this axis. Differentiation toward T-helper 1 (Th1) cells mediates inflammation and pathogen clearance, while T follicular helper (Tfh) cells facilitate germinal center (GC) reactions for the generation of high-affinity antibodies and immune memory. While Th1 and Tfh differentiation occurs in parallel, these CD4+ T-cell identities are mutually exclusive, and progression toward these ends is determined via the upregulation of T-bet and Bcl6, respectively. These lineage-defining transcription factors act in concert with multiple networks of transcriptional regulators that tip the T-bet and Bcl6 axis in CD4+ T-cell progenitors to either a Th1 or Tfh fate. It is now clear that these transcriptional networks are guided by cytokine cues that are not only varied between distinct viral infections but also dynamically altered throughout the duration of infection. Thus, multiple intrinsic and extrinsic factors combine to specify the fate, plasticity, and function of Th1 and Tfh cells during infection. Here, we review the current information on the mode of action of the lineage-defining transcription factors Bcl6 and T-bet and how they act individually and in complex to govern CD4+ T-cell ontogeny. Furthermore, we outline the multifaceted transcriptional regulatory networks that act upstream and downstream of Bcl6 and T-bet to tip the differentiation equilibrium toward either a Tfh or Th1 fate and how these are impacted by dynamic inflammatory cues.


2014 ◽  
Vol 116 (3) ◽  
pp. 539-543 ◽  
Author(s):  
Yang Chu ◽  
Fengming Wang ◽  
Meng Zhou ◽  
Lujun Chen ◽  
Yahua Lu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ditte Køster ◽  
Johanne Hovgaard Egedal ◽  
Søren Lomholt ◽  
Malene Hvid ◽  
Martin R. Jakobsen ◽  
...  

AbstractFibroblast-like synoviocytes (FLS) play an important pathological role in persistent inflammatory joint diseases such as rheumatoid arthritis (RA). These cells have primarily been characterized in the RA synovial membrane. Here we aim to phenotypically and functionally characterize cultured synovial fluid-derived FLS (sfRA-FLS). Paired peripheral blood mononuclear cells (PBMC) and sfRA-FLS from patients with RA were obtained and monocultures of sfRA-FLS and autologous co-cultures of sfRA-FLS and PBMC were established. The in situ activated sfRA-FLS were CD34-, CD45-, Podoplanin+, Thymocyte differentiation antigen-1+. SfRA-FLS expressed uniform levels of NFкB-related pathway proteins and secreted several pro-inflammatory cytokines dominated by IL-6 and MCP-1. In a co-culture model with autologous PBMC, the ICAM-1 and HLA-DR expression on sfRA-FLS and secretion of IL-1β, IL-6, and MCP-1 increased. In vivo, human sfRA-FLS were cartilage invasive both at ipsilateral and contralateral implantation site. We conclude that, sfRA-FLS closely resemble the pathological sublining layer FLS subset in terms of surface protein expression, cytokine production and leukocyte cross-talk potential. Further, sfRA-FLS are comparable to tissue-derived FLS in their capabilities to invade cartilage at implantation sites but also spread tissue destruction to a distant site. Collectively, sfRA-FLS can serve as a an easy-to-obtain source of pathological sublining FLS in RA.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Long-Shan Ji ◽  
Xue-Hua Sun ◽  
Xin Zhang ◽  
Zhen-Hua Zhou ◽  
Zhuo Yu ◽  
...  

Helping B cells and antibody responses is a major function of CD4+T helper cells. Follicular helper T (Tfh) cells are identified as a subset of CD4+T helper cells, which is specialized in helping B cells in the germinal center reaction. Tfh cells express high levels of CXCR5, PD-1, IL-21, and other characteristic markers. Accumulating evidence has demonstrated that the dysregulation of Tfh cells is involved in infectious, inflammatory, and autoimmune diseases, including lymphocytic choriomeningitis virus (LCMV) infection, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), IgG4-related disease (IgG4-RD), Sjögren syndrome (SS), and type 1 diabetes (T1D). Activation of subset-specific transcription factors is the essential step for Tfh cell differentiation. The differentiation of Tfh cells is regulated by a complicated network of transcription factors, including positive factors (Bcl6, ATF-3, Batf, IRF4, c-Maf, and so on) and negative factors (Blimp-1, STAT5, IRF8, Bach2, and so on). The current knowledge underlying the molecular mechanisms of Tfh cell differentiation at the transcriptional level is summarized in this paper, which will provide many perspectives to explore the pathogenesis and treatment of the relevant immune diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jie Ma ◽  
Chenlu Zhu ◽  
Bin Ma ◽  
Jie Tian ◽  
Samuel Essien Baidoo ◽  
...  

Follicular helper T (Tfh) cells are recognized as a distinct CD4+helper T-cell subset, which provides for B-cell activation and production of specific antibody responses, and play a critical role in the development of autoimmune disease. So far, only one study investigated the circulating Tfh cells increased in a subset of SLE patients. Since relatively little is known about the Tfh cells in rheumatoid arthritis (RA) patients, in this study, Tfh-cell frequency, related cytokine IL-21, and transcription factor Bcl-6 were investigated in 53 patients with RA and 31 health controls. Firstly, we found that the frequency ofCD4+CXCR5+ICOShighTfh cells was increased significantly in the peripheral blood of RA patients, compared with that in healthy controls. It is known that Tfh cells are critical for directing the development of an antibody response by germinal centers B cells; secondly, we observed that the Tfh-cell frequency is accompanied by the level of anti-CCP antibody in RA patients. Furthermore, expression of Bcl-6 mRNA and plasma IL-21 concentrations in RA patients was increased. Taken together, these findings have shown that the increased frequency of circulating Tfh cells is correlated with elevated levels of anti-CCP antibody, indicating the possible involvement of Tfh cells in the disease progression of RA.


Sign in / Sign up

Export Citation Format

Share Document