scholarly journals Age-dependent emergence of neurophysiological and behavioral abnormalities in progranulin-deficient mice

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Dávid Nagy ◽  
Lauren Herl Martens ◽  
Liza Leventhal ◽  
Angela Chen ◽  
Craig Kelley ◽  
...  

Abstract Background Loss-of-function mutations in the progranulin gene cause frontotemporal dementia, a genetic, heterogeneous neurodegenerative disorder. Progranulin deficiency leads to extensive neuronal loss in the frontal and temporal lobes, altered synaptic connectivity, and behavioral alterations. Methods The chronological emergence of neurophysiological and behavioral phenotypes of Grn heterozygous and homozygous mice in the dorsomedial thalamic—medial prefrontal cortical pathway were evaluated by in vivo electrophysiology and reward-seeking/processing behavior, tested between ages 3 and 12.5 months. Results Electrophysiological recordings identified a clear age-dependent deficit in the thalamocortical circuit. Both heterozygous and homozygous mice exhibited impaired input-output relationships and paired-pulse depression, but evoked response latencies were only prolonged in heterozygotes. Furthermore, we demonstrate firstly an abnormal reward-seeking/processing behavior in the homozygous mice which correlates with previously reported neuroinflammation. Conclusion Our findings indicate that murine progranulin deficiency causes age-dependent neurophysiological and behavioral abnormalities thereby indicating their validity in modeling aspects of human frontotemporal dementia.

2020 ◽  
Author(s):  
Jelena Scekic-Zahirovic ◽  
Inmaculada Sanjuan-Ruiz ◽  
Vanessa Kan ◽  
Salim Megat ◽  
Pierre De Rossi ◽  
...  

AbstractGene mutations causing cytoplasmic mislocalization of the RNA-binding protein FUS, lead to severe forms of amyotrophic lateral sclerosis (ALS). Cytoplasmic accumulation of FUS is also observed in other diseases, with unknown consequences. Here, we show that cytoplasmic mislocalization of FUS drives behavioral abnormalities in knock-in mice, including locomotor hyperactivity and alterations in social interactions, in the absence of widespread neuronal loss. Mechanistically, we identified a profound increase in neuronal activity in the frontal cortex of Fus knock-in mice in vivo. Importantly, RNAseq analysis suggested involvement of defects in inhibitory neurons, that was confirmed by ultrastructural and morphological defects of inhibitory synapses and increased synaptosomal levels of mRNAs involved in inhibitory neurotransmission. Thus, cytoplasmic FUS triggers inhibitory synaptic deficits, leading to increased neuronal activity and behavioral phenotypes. FUS mislocalization may trigger deleterious phenotypes beyond motor neuron impairment in ALS, but also in other neurodegenerative diseases with FUS mislocalization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jelena Scekic-Zahirovic ◽  
Inmaculada Sanjuan-Ruiz ◽  
Vanessa Kan ◽  
Salim Megat ◽  
Pierre De Rossi ◽  
...  

AbstractGene mutations causing cytoplasmic mislocalization of the RNA-binding protein FUS lead to severe forms of amyotrophic lateral sclerosis (ALS). Cytoplasmic accumulation of FUS is also observed in other diseases, with unknown consequences. Here, we show that cytoplasmic mislocalization of FUS drives behavioral abnormalities in knock-in mice, including locomotor hyperactivity and alterations in social interactions, in the absence of widespread neuronal loss. Mechanistically, we identified a progressive increase in neuronal activity in the frontal cortex of Fus knock-in mice in vivo, associated with altered synaptic gene expression. Synaptic ultrastructural and morphological defects were more pronounced in inhibitory than excitatory synapses and associated with increased synaptosomal levels of FUS and its RNA targets. Thus, cytoplasmic FUS triggers synaptic deficits, which is leading to increased neuronal activity in frontal cortex and causing related behavioral phenotypes. These results indicate that FUS mislocalization may trigger deleterious phenotypes beyond motor neuron impairment in ALS, likely relevant also for other neurodegenerative diseases characterized by FUS mislocalization.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 453 ◽  
Author(s):  
Sung-Tzu Liang ◽  
Gilbert Audira ◽  
Stevhen Juniardi ◽  
Jung-Ren Chen ◽  
Yu-Heng Lai ◽  
...  

Aging is a natural process that internal gene control and external stimuli mediate. Clinical data pointed out that homozygotic or heterozygotic mutation in the pyrroline-5-carboxylate reductase 1 (PYCR1) gene in humans caused cutis laxa (ARCL) disease, with progeroid appearance, lax and wrinkled skin, joint laxity, osteopenia, and mental retardation phenotypes. In this study, we aimed to generate pycr1 knockout (KO) zebrafish and carried out biochemical characterizations and behavior analyses. Marked apoptosis and senescence were detected in pycr1 KO zebrafish, which started from embryos/larvae stage. Biochemical assays showed that adult pycr1 KO fish have significantly reduced proline and extracellular matrix contents, lowered energy, and diminished superoxide dismutase (SOD) and telomerase activity when compared to the wild type fish, which suggested the pycr1 KO fish may have dysfunction in mitochondria. The pycr1 KO fish were viable; however, displayed progeria-like phenotype from the 4 months old and reach 50% mortality around six months old. In adult stage, we found that pycr1 KO fish showed reduced locomotion activity, aggression, predator avoidance, social interaction interest, as well as dysregulated color preference and circadian rhythm. In summary, we have identified multiple behavioral alterations in a novel fish model for aging with pycr1 gene loss-of-function by behavioral tests. This animal model may not only provide a unique vertebrate model to screen potential anti-aging drugs in the future, but also be an excellent in vivo model towards a better understanding of the corresponding behavioral alterations that accompany aging.


2017 ◽  
Author(s):  
Ping-Yue Pan ◽  
Patricia Sheehan ◽  
Qian Wang ◽  
Yuanxi Zhang ◽  
Jing Wang ◽  
...  

AbstractParkinson’s disease (PD) is an age-dependent neurodegenerative disorder characterized by the loss of substantia nigra dopaminergic (DAergic) neurons in ventral midbrain (MB). Identification of interactions between aging and the known risk variants is crucial to understanding the etiology of PD. Recessive mutations in SYNJ1 have recently been linked to familial early-onset atypical Parkinsonism. We now show an age-dependent decline of SYNJ1 expression in the striatum as well as in striatal DAergic terminals of aged mice. Heterozygous deletion of SYNJ1 in mice causes selective elevation of PIP2 in the MB, and manipulation of PIP2 levels also impairs synaptic vesicle recycling preferentially in MB neurons. SYNJ1+/− mice display progressive PD-like behavioral alterations and DAergic terminal degeneration. Furthermore, we found down-regulation of human SYNJ1 transcripts in a subset of sporadic PD brains, corroborating the role of an age-dependent decrease in SYNJ1 in predisposing DAergic neuron vulnerability and PD pathogenesis.


2017 ◽  
Author(s):  
Andreea Manole ◽  
Zane Jaunmuktane ◽  
Iain Hargreaves ◽  
Amelie Pandraud ◽  
Vincenzo Salpietro ◽  
...  

AbstractBrown-Vialetto-Van Laere syndrome (BVVLS) represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter (RFVT) genes, SLC52A2 and SLC52A3, have recently been linked to BVVLS. However, the genetic frequency, neuropathology and downstream consequences of RFVT mutations have previously been undefined. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between RFVT mutations and BVVLS, identifying twenty-two pathogenic mutations in SLC52A2 and SLC52A3, fourteen of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain (ETC), we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. ETC complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila RFVT homologue revealed reduced levels of riboflavin, downstream metabolites, and ETC complex I activity. RFVT knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings indicate mitochondrial dysfunction as a downstream consequence of RFVT gene defects in BVVLS and validate riboflavin esters as a potential therapeutic strategy.


Author(s):  
Deepika Vasudevan ◽  
Hidetaka Katow ◽  
Huai-Wei Huang ◽  
Grace Tang ◽  
Hyung Don Ryoo

Metazoans have evolved various quality control mechanisms to cope with cellular stress inflicted by external and physiological conditions. ATF4 is a major effector of the Integrated Stress Response (ISR), an evolutionarily conserved pathway that mediates adaptation to various cellular stressors. Loss of function of Drosophila ATF4, encoded by the gene cryptocephal (crc), results in lethality during pupal development. The roles of crc in Drosophila disease models and in adult tissue homeostasis thus remain poorly understood. Here, we report that a protein-trap MiMIC insertion in the crc locus generates a crc-GFP fusion protein that allows visualization of crc activity in vivo. This allele also acts as a hypomorphic mutant that uncovers previously unknown roles for crc. Specifically, the crc protein-trap line shows crc-GFP induction in a Drosophila model for Retinitis Pigmentosa (RP). This crc allele renders flies more vulnerable to amino acid deprivation and age-dependent retinal degeneration. These mutants also show defects in wing veins and oocyte maturation. Together, our data reveal previously unknown roles for crc in development, cellular homeostasis and photoreceptor survival.


2021 ◽  
Vol 22 (10) ◽  
pp. 5289
Author(s):  
Sara R. Oliveira ◽  
Pedro A. Dionísio ◽  
Maria M. Gaspar ◽  
Maria B. T. Ferreira ◽  
Catarina A. B. Rodrigues ◽  
...  

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, mainly characterized by motor deficits correlated with progressive dopaminergic neuronal loss in the substantia nigra pars compacta (SN). Necroptosis is a caspase-independent form of regulated cell death mediated by the concerted action of receptor-interacting protein 3 (RIP3) and the pseudokinase mixed lineage domain-like protein (MLKL). It is also usually dependent on RIP1 kinase activity, influenced by further cellular clues. Importantly, necroptosis appears to be strongly linked to several neurodegenerative diseases, including PD. Here, we aimed at identifying novel chemical inhibitors of necroptosis in a PD-mimicking model, by conducting a two-step screening. Firstly, we phenotypically screened a library of 31 small molecules using a cellular model of necroptosis and, thereafter, the hit compound effect was validated in vivo in a sub-acute 1-methyl-1-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) PD-related mouse model. From the initial compounds, we identified one hit—Oxa12—that strongly inhibited necroptosis induced by the pan-caspase inhibitor zVAD-fmk in the BV2 murine microglia cell line. More importantly, mice exposed to MPTP and further treated with Oxa12 showed protection against MPTP-induced dopaminergic neuronal loss in the SN and striatum. In conclusion, we identified Oxa12 as a hit compound that represents a new chemotype to tackle necroptosis. Oxa12 displays in vivo effects, making this compound a drug candidate for further optimization to attenuate PD pathogenesis.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009794
Author(s):  
Stefano Suzzi ◽  
Reiner Ahrendt ◽  
Stefan Hans ◽  
Svetlana A. Semenova ◽  
Avinash Chekuru ◽  
...  

LRRK2 gain-of-function is considered a major cause of Parkinson’s disease (PD) in humans. However, pathogenicity of LRRK2 loss-of-function in animal models is controversial. Here we show that deletion of the entire zebrafish lrrk2 locus elicits a pleomorphic transient brain phenotype in maternal-zygotic mutant embryos (mzLrrk2). In contrast to lrrk2, the paralog gene lrrk1 is virtually not expressed in the brain of both wild-type and mzLrrk2 fish at different developmental stages. Notably, we found reduced catecholaminergic neurons, the main target of PD, in specific cell populations in the brains of mzLrrk2 larvae, but not adult fish. Strikingly, age-dependent accumulation of monoamine oxidase (MAO)-dependent catabolic signatures within mzLrrk2 brains revealed a previously undescribed interaction between LRRK2 and MAO biological activities. Our results highlight mzLrrk2 zebrafish as a tractable tool to study LRRK2 loss-of-function in vivo, and suggest a link between LRRK2 and MAO, potentially of relevance in the prodromic stages of PD.


2021 ◽  
Vol 22 (24) ◽  
pp. 13280
Author(s):  
Raquel García-García ◽  
Laura Martín-Herrero ◽  
Laura Blanca-Pariente ◽  
Jesús Pérez-Cabello ◽  
Cintia Roodveldt

Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disorder of motor neurons in adults, with a median survival of 3–5 years after appearance of symptoms, and with no curative treatment currently available. Frontotemporal dementia (FTD) is also an adult-onset neurodegenerative disease, displaying not only clinical overlap with ALS, but also significant similarities at genetic and pathologic levels. Apart from the progressive loss of neurons and the accumulation of protein inclusions in certain cells and tissues, both disorders are characterized by chronic inflammation mediated by activated microglia and astrocytes, with an early and critical impact of neurodegeneration along the disease course. Despite the progress made in the last two decades in our knowledge around these disorders, the underlying molecular mechanisms of such non-cell autonomous neuronal loss still need to be clarified. In particular, immune signaling kinases are currently thought to have a key role in determining the neuroprotective or neurodegenerative nature of the central and peripheral immune states in health and disease. This review provides a comprehensive and updated view of the proposed mechanisms, therapeutic potential, and ongoing clinical trials of immune-related kinases that have been linked to ALS and/or FTD, by covering the more established TBK1, RIPK1/3, RACK I, and EPHA4 kinases, as well as other emerging players in ALS and FTD immune signaling.


2018 ◽  
Vol 115 (12) ◽  
pp. E2849-E2858 ◽  
Author(s):  
Andrew D. Nguyen ◽  
Thi A. Nguyen ◽  
Jiasheng Zhang ◽  
Swathi Devireddy ◽  
Ping Zhou ◽  
...  

Frontotemporal dementia (FTD) is the most common neurodegenerative disorder in individuals under age 60 and has no treatment or cure. Because many cases of FTD result from GRN nonsense mutations, an animal model for this type of mutation is highly desirable for understanding pathogenesis and testing therapies. Here, we generated and characterized GrnR493X knockin mice, which model the most common human GRN mutation, a premature stop codon at arginine 493 (R493X). Homozygous GrnR493X mice have markedly reduced Grn mRNA levels, lack detectable progranulin protein, and phenocopy Grn knockout mice, with CNS microgliosis, cytoplasmic TDP-43 accumulation, reduced synaptic density, lipofuscinosis, hyperinflammatory macrophages, excessive grooming behavior, and reduced survival. Inhibition of nonsense-mediated mRNA decay (NMD) by genetic, pharmacological, or antisense oligonucleotide-based approaches showed that NMD contributes to the reduced mRNA levels in GrnR493X mice and cell lines and in fibroblasts from patients containing the GRNR493X mutation. Moreover, the expressed truncated R493X mutant protein was functional in several assays in progranulin-deficient cells. Together, these findings establish a murine model for in vivo testing of NMD inhibition or other therapies as potential approaches for treating progranulin deficiency caused by the R493X mutation.


Sign in / Sign up

Export Citation Format

Share Document