scholarly journals hUCMSC-extracellular vesicles downregulated hepatic stellate cell activation and reduced liver injury in S. japonicum-infected mice

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Liyang Dong ◽  
Yanan Pu ◽  
Xiaojun Chen ◽  
Xin Qi ◽  
Lina Zhang ◽  
...  

Abstract Background Accumulating evidence shows that mesenchymal stem cells (MSCs) have the potential as a cellular therapy avenue for schistosome-induced liver injury. Extracellular vesicles (EVs) are membranous vesicles released by almost all cell types, and EVs produced by MSCs (MSC-EVs) exert therapeutic effects in several disease models. However, the potential of MSC-EVs in schistosomiasis treatment remains unclear. Methods Using survival analysis, HE and Masson’s trichrome staining, immunohistochemical, western blot analysis, real-time PCR, and EdU proliferation, we investigated the effects of human umbilical cord MSC-derived EVs (hUCMSC-EVs) on the survival and liver injury in the S. japonicum-infected mice and explored the underlying mechanism. Results Here, we found that like hUCMSCs, hUCMSC-EVs significantly ameliorated liver injury and improved the survival of schistosome-infected mice. Indeed, the hUCMSC-EV-mediated alleviation of liver injury is associated with decreased expression of α-smooth muscle actin (α-SMA), collagen 1, and collagen 3. More importantly, we showed that hUCMSC-EVs directly suppressed the proliferation of LX2 (human hepatic stellate cell) in vitro. In addition, hUCMSC-EVs significantly downregulated the activation of LX2 after transforming growth factor-β1 (TGF-β1) treatment. Conclusion Our results provided the first evidence that hUCMSC-EVs reduced liver injury in S. japonicum-infected mice, potentially creating new avenues for the treatment of liver damage in schistosomiasis.

2015 ◽  
Vol 308 (5) ◽  
pp. G403-G415 ◽  
Author(s):  
Martin J. J. Ronis ◽  
Kelly E. Mercer ◽  
Brenda Gannon ◽  
Bridgette Engi ◽  
Piotr Zimniak ◽  
...  

To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male 129/SvJ mice (wild-type, WT) and glutathione S-transferase A4–4-null (GSTA4−/−) mice for 40 days. GSTA4−/− mice were crossed with peroxisome proliferator-activated receptor-α-null mice (PPAR-α−/−), and the effects of EtOH in the resulting double knockout (dKO) mice were compared with the other strains. EtOH increased lipid peroxidation in all except WT mice ( P < 0.05). Increased steatosis and mRNA expression of the inflammatory markers CXCL2, tumor necrosis factor-α (TNF-α), and α-smooth muscle actin (α-SMA) were observed in EtOH GSTA4−/− compared with EtOH WT mice ( P < 0.05). EtOH PPAR-α−/− mice had increased steatosis, serum alanine aminotransferase (ALT), and hepatic CD3+ T cell populations and elevated mRNA encoding CD14, CXCL2, TNF-α, IL-6, CD138, transforming growth factor-β, platelet-derived growth factor receptor-β (PDGFR-β), matrix metalloproteinase (MMP)-9, MMP-13, α-SMA, and collagen type 1 compared with EtOH WT mice. EtOH-fed dKO mice displayed elevation of periportal hepatic 4-hydroxynonenal adducts and serum antibodies against malondialdehyde adducts compared with EtOH feeding of GSTA4−/−, PPAR-α−/−, and WT mice ( P < 0.05). ALT was higher in EtOH dKO mice compared with all other groups ( P < 0.001). EtOH-fed dKO mice displayed elevated mRNAs for TNF-α and CD14, histological evidence of fibrosis, and increased PDGFR, MMP-9, and MMP-13 mRNAs compared with the EtOH GSTA4−/− or EtOH PPAR-α−/− genotype ( P < 0.05). These findings demonstrate the central role lipid peroxidation plays in mediating progression of alcohol-induced necroinflammatory liver injury, stellate cell activation, matrix remodeling, and fibrosis.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1419 ◽  
Author(s):  
Dewidar ◽  
Meyer ◽  
Dooley ◽  
Meindl-Beinker

Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-β is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-β has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-β and its upstream and downstream regulatory mechanisms will help to design better TGF-β based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-β signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-β on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-β. Finally, we discuss new approaches to target the TGF-β pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.


Sign in / Sign up

Export Citation Format

Share Document