scholarly journals Thymosin beta-4 improves endothelial function and reparative potency of diabetic endothelial cells differentiated from patient induced pluripotent stem cells

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Liping Su ◽  
Xiaocen Kong ◽  
Szejie Loo ◽  
Yu Gao ◽  
Bingli Liu ◽  
...  

Abstract Background Prior studies show that signature phenotypes of diabetic human induced pluripotent stem cells derived endothelial cells (dia-hiPSC-ECs) are disrupted glycine homeostasis, increased senescence, impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. In the current study, we aimed to assess the role of thymosin β-4 (Tb-4) on endothelial function using dia-hiPSC-ECs as disease model of endothelial dysfunction. Methods and results Using dia-hiPSC-ECs as models of endothelial dysfunction, we determined the effect of Tb-4 on cell proliferation, senescence, cyto-protection, protein expression of intercellular adhesion molecule-1 (ICAM-1), secretion of endothelin-1 and MMP-1, mitochondrial membrane potential, and cyto-protection in vitro and angiogenic potential for treatment of ischemic limb disease in a mouse model of type 2 diabetes mellitus (T2DM) in vivo. We found that 600 ng/mL Tb4 significantly up-regulated AKT activity and Bcl-XL protein expression, enhanced dia-hiPSC-EC viability and proliferation, limited senescence, reduced endothelin-1 and MMP-1 secretion, and improved reparative potency of dia-hiPSC-ECs for treatment of ischemic limb disease in mice with T2DM. However, Tb4 had no effect on improving mitochondrial membrane potential and glycine homeostasis and reducing intercellular adhesion molecule-1 protein expression in dia-hiPSC-ECs. Conclusions Tb-4 improves endothelial dysfunction through enhancing hiPSC-EC viability, reducing senescence and endothelin-1 production, and improves angiogenic potency in diabetes.

Author(s):  
Liping Su ◽  
Xiaocen Kong ◽  
Sze Jie Loo ◽  
Yu Gao ◽  
Jean-Paul Kovalik ◽  
...  

Induced pluripotent stem cells derived cells (iPSCs) not only can be used for personalized cell transfer therapy, but also can be used for modeling diseases for drug screening and discovery in vitro. Although prior studies have characterized the function of rodent iPSCs derived endothelial cells (ECs) in diabetes or metabolic syndrome, feature phenotypes are largely unknown in hiPSC-ECs from patients with diabetes. Here, we used hiPSC lines from patients with type 2 diabetes mellitus (T2DM) and differentiated them into ECs (dia-hiPSC-ECs). We found that dia-hiPSC-ECs had disrupted glycine homeostasis, increased senescence, and impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. These signature phenotypes will be helpful to establish dia-hiPSC-ECs as models of endothelial dysfunction for understanding molecular mechanisms of disease and for identifying and testing new targets for the treatment of endothelial dysfunction in diabetes.


2021 ◽  
Vol 11 (7) ◽  
pp. 219-227
Author(s):  
Yu. Bilooka ◽  
O. Fediv ◽  
H. Stupnytska ◽  
V. Bilookyi ◽  
O. Bilookyi ◽  
...  

The article contains the analysis of results concerning investigation of adipocytokines content and endothelial dysfunction in 97 patients with irritable bowel syndrome associated with obesity. The blood serum was examined for the content of adipocytokines (leptin, adiponectin, resistin), stable nitrogen monoxide metabolites (nitrites/nitrates), endothelin-1, intercellular adhesion molecule 1 (ICAM-1), and the number of circulating endothelial cells (CEC).  Patients with IBS associated with obesity and prevailing diarrhea are found to develop a prominent imbalance of adipocytokines which is manifested in high levels of leptin and resisin and low level of adiponectin in the blood serum. Endothelial dysfunction evidenced by a high level of endothelin-1, the number of circulating endothelial cells, general NO and intercellular adhesion molecules 1, is characteristic for patients with IBS associated with obesity and prevailing diarrhea.


2012 ◽  
Vol 94 (10S) ◽  
pp. 605
Author(s):  
K.-M. Park ◽  
H.-S. Nam ◽  
S.-M. Park ◽  
S.-H. Cha ◽  
I.-H. Park ◽  
...  

2018 ◽  
Vol 49 (2) ◽  
pp. 565-577 ◽  
Author(s):  
Lei Huang ◽  
Fan Dai ◽  
Lian Tang ◽  
Xiaofeng Bao ◽  
Zhaoguo Liu ◽  
...  

Background/Aims: This study used Rho-associated protein kinase (ROCK) isoform-selective suppression or a ROCK inhibitor to analyze the roles of ROCK1 and ROCK2 in regulating endothelial dysfunction triggered by oxidized low-density lipoprotein (oxLDL). Methods: ROCK1 or ROCK2 expression in human umbilical vein endothelial cells (HUVECs) was suppressed by small interfering RNA (siRNA). HUVECs were pretreated with 30 μM Y27632 (pan ROCK inhibitor) for 30 min before exposure to 200 μg/mL oxLDL for an additional 24 h. Cell viability was determined by the MTT assay, and cell apoptosis was evaluated by the TUNEL assay. Protein expression and phosphorylation were assessed by Western blot analysis. The morphology of total and phosphorylated vimentin (p-vimentin) and the co-localization of vimentin with vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) were detected by the immunofluorescence assay. The adhesion of promonocytic U937 cells to HUVECs was observed by light microscopy. Results: ROCK2 suppression or Y27632 treatment, rather than ROCK1 deletion, effectively reduced endothelial cell apoptosis and preserved cell survival. ROCK2 suppression exhibited improved vimentin and p-vimentin cytoskeleton stability and decreased vimentin cleavage by attenuating caspase-3 activity. In addition, increased p-vimentin expression induced by oxLDL was significantly inhibited by ROCK2 deletion or Y27632 treatment. In contrast, ROCK1 suppression showed no obvious effects on the vimentin cytoskeleton, but significantly regulated the expression of adhesion molecules. Endothelial ICAM-1 or VCAM-1 expression induced by oxLDL was obviously inhibited by ROCK1 suppression or Y27632 treatment. Moreover, the expression of ICAM-1 induced by oxLDL could also be reduced by ROCK2 suppression. Furthermore, ROCK2 deficiency or Y27632 treatment inhibited the redistribution of adhesion molecules and their co-localization with vimentin caused by oxLDL. These effects resulted in the significant inhibition of monocyte-endothelial adhesion induced by oxLDL. Conclusion: The results of this study support the novel concept that ROCK1 is involved in oxLDL-induced cell adhesion by regulating adhesion molecule expression, whereas ROCK2 is required for both endothelial apoptosis and adhesion by regulating both the vimentin cytoskeleton and adhesion molecules. Consequently, ROCK1 and ROCK2 have distinct roles in the regulation of oxLDL-mediated endothelial dysfunction.


2010 ◽  
Vol 70 (3) ◽  
pp. 544-550 ◽  
Author(s):  
Giuseppina Farina ◽  
Michael York ◽  
Cindy Collins ◽  
Robert Lafyatis

BackgroundIn patients with systemic sclerosis (SSc), the relationship between innate immune activation, represented by increased expression of interferon (IFN)-regulated genes, and vascular injury/activation, manifest by increased endothelin-1 (ET-1), endothelin converting enzyme-1 (ECE1) and intercellular adhesion molecule-1, is uncertain.ObjectiveTo investigate the potential roles of innate immune ligands in both these pathogenic pathways.MethodsThe effect of known Toll-like receptor (TLR) ligands was tested in vitro on dermal microvascular and pulmonary arterial endothelial cells, and on dermal fibroblasts cultured from healthy controls and patients with SSc. To test the effect of double-stranded RNA (dsRNA) on vascular activation/injury in vivo, polyinosinic/polycytidylic acid (poly(I:C)) was administered continuously over 7 days by subcutaneous osmotic pump.ResultsdsRNA/poly(I:C), but not other TLR ligands, highly stimulated ET-1 protein and mRNA (EDN1), as well as intercellular adhesion molecule-1 (ICAM-1) and IFN-regulated MX2, by endothelial cells and dermal fibroblasts. Poly(I:C) induced EDN1, ECE1, and ICAM-1 mRNA expression in poly(I:C) treated skin. Poly(I:C)-induced EDN1, ECE1 and MX2 was not blocked in mice with the type I IFN receptor deleted. However, poly(I:C)-induced EDN1 and ECE1, but not poly(I:C)-induced ICAM-1 expression was blocked in mice with the TLR3 signalling protein TRIF/TICAM-1 deleted.ConclusionTogether these data show that the dsRNA can regulate genes associated with vascular activation, as seen in SSc, that type I IFNs do not mediate these effects, and that EDN1 and ECE1 but not ICAM-1 activation is mediated by TLR3.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3210-3210
Author(s):  
Luisa Weiss ◽  
Paulina Szklanna ◽  
Tadhg Prendiville ◽  
Karl Egan ◽  
Sarah Kelliher ◽  
...  

Abstract Venous Thromboembolism (VTE) remains a significant cause of morbidity and mortality worldwide. Rivaroxaban, a direct oral factor Xa inhibitor, mediates anti-inflammatory and cardiovascular-protective effects besides its well-established anticoagulant properties, however, these remain poorly characterized. Extracellular vesicles (EVs) are important circulating messengers regulating a myriad of biological and pathological processes and may be highly relevant to the pathophysiology of VTE as they reflect alterations in platelet and endothelial biology. However, the effects of Rivaroxaban on circulating pro-inflammatory EVs in VTE patients remain unknown. We hypothesized that rivaroxaban's anti-inflammatory properties are reflected upon differential molecular profiles of circulating EVs. Single-episode VTE patients anticoagulated with 20 mg Rivaroxaban or warfarin at a target INR of 2.0-3.0, respectively, who had commenced therapy no sooner than 3 months previously were recruited following informed written consent at the Mater Misericordiae University Hospital, Dublin, Ireland. Patient data including age, sex, BMI, prevalent risk factors and comorbidities were collected. Patients on warfarin therapy had a time in therapeutic range of at least 55% and an INR in target range at time of blood sampling. Exclusion criteria included known pro-inflammatory conditions, active malignancy, recurrent VTE, antiphospholipid syndrome, bleeding or platelet function disorders, use of anti-platelet drugs, and thrombocytopenia. To address the hypothesis, we firstly used a combination of Nanoparticle Tracking Analysis (NTA) and flow cytometry to comprehensively characterise differences in the concentration and size of small (0-200 nm) and large (200-1000 nm) circulating EVs, respectively. Statistical analysis revealed a trend towards reduced levels of circulating small and large EVs in Rivaroxaban-treated VTE patients compared with matched warfarin controls. Moreover, small and large EVs measured in the patients plasma correlated strongly and highly significantly (r=0.804, p<0.0001), indicating a concomitant decrease in both populations. As circulating EVs are considered pro-coagulant and pro-inflammatory, these results may point towards an ameliorated baseline pro-inflammatory state of VTE patients anticoagulated with Rivaroxaban. To further uncover Rivaroxaban-mediated alterations, we next compared proteomic profiles of circulating EVs. We robustly quantified over 300 vesicular proteins. Statistical analysis of the protein expression level using a student's t-test with a false discovery rate of 5% and a minimal fold change of 0.1 identified differential protein expression of a tightly regulated cluster of proteins involved in negative feedback regulation of inflammatory and coagulation pathways in Rivaroxaban-treated patients, which may in part contribute to the superior outcomes of Rivaroxaban-treated patients seen in recent clinical trials. Furthermore, we recently established that Rivaroxaban potentially ameliorates endothelial dysfunction in a cohort of non-valvular atrial fibrillation patients. Therefore, we aimed to also assess circulating markers of endothelial activation (Intercellular Adhesion Molecule 1 [ICAM-1] and Tissue Factor Pathway Inhibitor [TFPI]). Intriguingly, Rivaroxaban-treated patients exhibited an increase in plasma TFPI levels with a simultaneous decrease in soluble ICAM-1, potentially pointing towards ameliorated endothelial dysfunction in Rivaroxaban-treated VTE patients relative to warfarin. Collectively, we established that EV proteomic signatures are powerful biological sensors of Rivaroxaban's anti-inflammatory potential. Moreover, Rivaroxaban therapy may ameliorate endothelial dysfunction relative to warfarin. These findings are of translational relevance towards characterizing the anti-inflammatory and cardiovascular-protective mechanisms associated with Rivaroxaban therapy. Disclosures Kevane: Leo Pharma: Research Funding. Murphy: Bayer Pharma: Research Funding. Ni Ainle: Daiichi-Sankyo: Research Funding; Actelion: Research Funding; Leo Pharma: Research Funding; Bayer Pharma: Research Funding. Maguire: Bayer Pharma: Research Funding; Actelion: Research Funding.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Amal Ahmed Mohamed ◽  
Wafaa Gh. Shousha ◽  
Moushira Erfan Zaki ◽  
Hala T. El-Bassyouni ◽  
Hadeel El-Hanafi ◽  
...  

Abstract Background: Obesity is an alarming threat to health in Egypt. More than one in three Egyptians is obese, the highest rate in the world. We aimed to delineate the variability of inflammation and endothelial dysfunction markers among Egyptian females with different obesity classes. Methods: Out of 130 females, 70 were categorized into three obesity groups: Class I, body mass index (BMI) 30–34.9 kg/m2; Class II, BMI 35–39.9 kg/m2 and Class III BMI ≥ 40 kg/m2, besides 60 control subjects. Anthropometric measurements were recorded and serum levels of tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), interleukin (IL) 6 (IL-6), IL-12, soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vascular adhesion molecule 1 (sVCAM-1) were assessed among participants. Results: In all three classes of obesity, significant increase (P <0.05) in BMI, waist-hip ratio, fat mass and body fat mass % were noted. CRP and sVCAM-1 levels were increased among the three obesity groups. TNF-α levels were increased in class II and III obesity groups. IL-6 and IL-12 levels were elevated in class I and class III groups. While, ICAM-1 levels were increased in class III obesity group. Conclusion: Based on individuals’ BMI, serum levels of TNF-α, CRP, IL-6, IL-12, sVCAM-1 and sICAM-1 are differentially altered with the progression of obesity. We strongly support the hypothesis that, as the obesity rate is still mounting, a subclinical inflammatory reaction has a role in pathogenesis of obesity and emphasize the elevation of endothelial dysfunction in individuals with obesity.


Sign in / Sign up

Export Citation Format

Share Document