scholarly journals In vivo passage of Salmonella Typhimurium results in minor mutations in the bacterial genome and increases in vitro invasiveness

2019 ◽  
Vol 50 (1) ◽  
Author(s):  
Andrea R. McWhorter ◽  
Rick Tearle ◽  
Talia S. Moyle ◽  
Kapil K. Chousalkar

Abstract Eggs and raw or undercooked egg-containing food items are frequently identified as the bacterial source during epidemiolocal investigation of Salmonella outbreaks. Multi-locus variable number of tandem repeats analysis (MLVA) is a widely used Salmonella typing method enabling the study of diversity within populations of the same serotype. In vivo passage, however, has been linked with changes in MLVA type and more broadly the Salmonella genome. We sought to investigate whether in vivo passage through layer hens had an effect on MLVA type as well as the bacterial genome and whether any mutations affected bacterial virulence. Layer hens were infected with either Salmonella Typhimurium DT9 (03-24-11-11-523) as part of a single infection or were co-infected with an equal amount of Salmonella Mbandaka. Salmonella shedding in both single and co-infected birds was variable over the course of the 16-week experiment. Salmonella Typhimurium and Salmonella Mbandaka were identified in feces of co-infected birds. Salmonella colonies isolated from fecal samples were subtyped using MLVA. A single change in SSTR-6 was observed in Salmonella Typhimurium strains isolated from co-infected birds. Isolates of Salmonella Typhimurium of both the parent (03-24-11-11-523) and modified (03-24-12-11-523) MLVA type were sequenced and compared with the genome of the parent strain. Sequence analysis revealed that in vivo passaging resulted in minor mutation events. Passaged isolates exhibited significantly higher invasiveness in cultured human intestinal epithelial cells than the parent strain. The microevolution observed in this study suggests that changes in MLVA may arise more commonly and may have clinical significance.

Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


1963 ◽  
Vol 61 (3) ◽  
pp. 353-363 ◽  
Author(s):  
A. L. Olitzki ◽  
Dina Godinger

1. Salmonella typhi, strain Ty2, grown in vivo and employed as acetone-dried vaccine possessed a higher immunizing potency than the descendants of the same parent strain grown in vitro and employed as vaccine.2. When 2 × 108in vitro-grown bacteria were employed as challenge, the immunizing effects of both types of vaccine were more marked than after administration of 2 × 108in vivo-grown bacteria as challenge.3. The higher potency of the in vivo-grown vaccine was apparent in all experiments, whether the challenge strain was grown in vivo or in vitro.4. Immunogenic substances were isolated from infected organs of mice and guinea-pigs, and an immunogenic substance from the peritoneal fluid of the infected guinea-pigs was concentrated by precipitation with ethanol.


1993 ◽  
Vol 13 (9) ◽  
pp. 5710-5724
Author(s):  
E DesJardins ◽  
N Hay

Transcription of the human proto-oncogene c-myc is governed by two tandem principal promoters, termed P1 and P2. In general, the downstream promoter, P2, is predominant, which is in contrast to the promoter occlusion phenomenon usually observed in genes containing tandem promoters. A shift in human c-myc promoter usage has been observed in some tumor cells and in certain physiological conditions. However, the mechanisms that regulate promoter usage are not well understood. The present studies identify regulators which are required to promote transcription from both human c-myc promoters, P1 and P2, and have a role in determining their relative activities in vivo. A novel regulatory region located 101 bp upstream of P1 was characterized and contains five tandem repeats of the consensus sequence CCCTCCCC (CT element). The integrity of the region containing all five elements is required to promote transcription from P1 and for maximal activity from P2 in vivo. A single copy of this same element, designated CT-I2, also appears in an inverted orientation 53 bp upstream of the P2 transcription start site. This element has an inhibitory effect on P1 transcription and is required for P2 transcription. The transcription factor Sp1 was identified as the factor that binds specifically to the tandem CT elements upstream of P1 and to the CT-I2 element upstream of P2. In addition, the recently cloned zinc finger protein ZF87, or MAZ, was also able to bind these same elements in vitro. The five tandem CT elements can be functionally replaced by a heterologous enhancer that only in the absence of CT-I2 reverses the promoter usage, similar to what is observed in the translocated c-myc allele of Burkitt's lymphoma cells.


Author(s):  
Daria Aleksandrovna Kuznetsova ◽  
Aleksey Leonidovich Trukhachev ◽  
Violetta Aleksandrovna Rykova ◽  
Olga Nikolaevna Podladchikova

The paper analyzes the siderophore biosynthesis genes that are located in the ysu and ynp loci of only Y. pestis and Y. pseudotuberculosis, have variable structure between different strains of both species and contain previously unknown variable number tandem repeats (VNTR). The purpose of the study was to assess the possibility of using these VNTR as genetic markers for intra-and interspecific differentiation of pathogenic Yersinia. Based on the novel VNTR-markers, three pairs of primers (ysu-interF/R, ilp1F/R и ilp2F/R) were designed and used for the in silico and in vitro PCR analysis of various Y.pestis and Y. pseudotuberculosis strains. All studied Y. pestis strains of the main subspecies (ssp pestis), unlike the strains of non-main subspecies and Y. pseudotuberculosis, did not give amplicon with ilp1F/R primers, since the area between them contains an IS100 element. To identify the strains of the main subspecies, the fourth pair of primers ilp1F-is100R was designed, allowing the most dangerous ssp pestis strains to be distinguished from the not dangerous non-main ssp strains. Y. pseudotuberculosis strains were characterized by a significant variety of amplicons with three pairs of primers, and which made it possible to carry out intraspecies strain genotyping. At the same time, for those strains whose serotype is known, the correlation between the serogroup and the genotype of the strains was observed. Analysis of the 1 serotype strains representing most sequenced Y. pseudotuberculosis strains allowed us to separate two gene groups differing from the rest of 1 serotype gene groups. The first one included the serotype 1a strains isolated from people in Europe, which are known to have the greatest pathogenetic potential. The other one was formed by serotype 1b strains isolated from people in Siberia and Primorye, which are characterized by the high epidemic potential. Thus, four pairs of primers designed in this study can be used to develop additional tests for the identification and differential diagnostics of the most dangerous Y. pestis ssp pestis and Y. pseudotuberculosis serotype 1a and 1b strains.


1987 ◽  
Vol 7 (1) ◽  
pp. 314-325
Author(s):  
C A Harrington ◽  
D M Chikaraishi

The transcriptional activity of spacer sequences flanking the rat 45S ribosomal DNA (rDNA) gene were studied. Nascent RNA labeled in in vitro nuclear run-on reactions hybridized with both 5' and 3' spacer regions. The highest level of hybridization was seen with an rDNA fragment containing tandem repeats of a 130-base-pair sequence upstream of the 45S rRNA initiation site. Synthesis of RNA transcripts homologous to this internally repetitious spacer region was insensitive to high levels of alpha-amanitin, suggesting that it is mediated by RNA polymerase I. Analysis of steady-state RNA showed that these transcripts were present at extremely low levels in vivo relative to precursor rRNA transcripts. In contrast, precursor and spacer run-on RNAs were synthesized at similar levels. This suggests that spacer transcripts are highly unstable in vivo; therefore, it may be the process of transcription rather than the presence of spacer transcripts that is functionally important. Transcription in this upstream rDNA region may be involved in regulation of 45S rRNA synthesis in rodents, as has been suggested previously for frog rRNA. In addition, the presence of transcriptional activity in other regions of the spacer suggests that some polymerase I molecules may transcribe through the spacer from one 45S gene to the next on rodent rDNA.


Parasitology ◽  
1993 ◽  
Vol 106 (1) ◽  
pp. 31-37 ◽  
Author(s):  
J. Tachezy ◽  
J. Kulda ◽  
E. Tomková

SUMMARYAerobic resistance of Trichomonas vaginalis to metronidazole was induced in vitro by anaerobic cultivation of drug-susceptible trichomonads with low concentrations of the drug (2–3 μg/ml) for 50 days. Minimal lethal concentrations (MLC) for metronidazole of the resistant derivatives were high in aerobic susceptibility assays (MLC = 216–261.5 μg/ml) but low in anaerobic assays (MLC = 4.2–6.3 μg/ml), surpassing MLC values of their parent strain approximately 50-fold and 3-fold under aerobiosis and anaerobiosis, respectively. Sensitivity to metronidazole under anaerobic conditions and activity of the hydrogenosomal enzyme pyruvate: ferredoxin oxidoreductase indicated that the resistance was of the aerobic type. Dependence of the resistance manifestation on O2 was further confirmed by susceptibility assays in vitro performed in defined gas mixtures of different oxygen content (1–20%). Five percent concentration of O2 proved to be the threshold required for resistance demonstration and the MLC values further increased with increasing O2 concentrations. The in vitro-induced resistance was also demonstrated in vivo by subcutaneous mouse assay. The dose of metronidazole needed to cure 50% of infected mice (DC50) was 223 mg/kg × 3 for resistant derivative MR-3a but 6.6 mg/kg × 3 only for its drug-susceptible parent strain. The metronidazole – resistant strains developed in this study correspond by their properties to drug-resistant T. vaginalis strains isolated from patients refractory to treatment, and promise to be a useful tool in the study of 5-nitroimidazole aerobic resistance.


2020 ◽  
Vol 117 (38) ◽  
pp. 23762-23773
Author(s):  
Archana Pant ◽  
Satyabrata Bag ◽  
Bipasa Saha ◽  
Jyoti Verma ◽  
Pawan Kumar ◽  
...  

Bacterial species are hosts to horizontally acquired mobile genetic elements (MGEs), which encode virulence, toxin, antimicrobial resistance, and other metabolic functions. The bipartite genome ofVibrio choleraeharbors sporadic and conserved MGEs that contribute in the disease development and survival of the pathogens. For a comprehensive understanding of dynamics of MGEs in the bacterial genome, we engineered the genome ofV. choleraeand examined in vitro and in vivo stability of genomic islands (GIs), integrative conjugative elements (ICEs), and prophages. Recombinant vectors carrying the integration module of these GIs, ICE and CTXΦ, helped us to understand the efficiency of integrations of MGEs in theV. choleraechromosome. We have deleted more than 250 acquired genes from 6 different loci in theV. choleraechromosome and showed contribution of CTX prophage in the essentiality of SOS response master regulator LexA, which is otherwise not essential for viability in other bacteria, includingEscherichia coli. In addition, we observed that the core genome-encoded RecA helps CTXΦ to bypassV. choleraeimmunity and allow it to replicate in the host bacterium in the presence of similar prophage in the chromosome. Finally, our proteomics analysis reveals the importance of MGEs in modulating the levels of cellular proteome. This study engineered the genome ofV. choleraeto remove all of the GIs, ICEs, and prophages and revealed important interactions between core and acquired genomes.


1981 ◽  
Vol 87 (3) ◽  
pp. 339-355 ◽  
Author(s):  
S. Helgason ◽  
D. C. Old

SummaryAn epidemiological study of Sonne dysentery in Dundee during the years 1971–6 was made by examining, in respect of 1420 isolates ofShigella sonnei, the discriminating power of colicine typing, antibiogram testing, biotyping and resistotyping and the stability of the markers they provided.Colicine typing identified nine colicine types, including four not previously described. However, because types 4 and 4 var., determined bycolIb, and type U, producing no colicines, accounted for 96 % of the isolates, discrimination with colicine typing was poor. In antibiotic sensitivity tests, 13 different antibiogram patterns were noted. Less than 1 % of the isolates were sensitive to all of the eight antibiotics tested; most were multiply drug-resistant. Resistance to kanamycin, neomycin and paromomycin (KNP) was apparently due to a single resistance determinant, widely distributed in a majority (53%) of the isolates. When definitive times were chosen for reading each biotyping test, only maltose and rhamnose of the 13 ‘sugars’ tested differentiated isolates into prompt- and late-fermenting types. Though the ability to ferment rhamnose was a stable property, it discriminated only 1·5% of the minority, late-fermenting type. Resistotyping with six chemicals discriminated eight epidemiologically valid resistotypes, including three new types. However, 93 % of the isolates belonged to only three resistotypes.Analysis of the data for isolates from 286 epidemiologically distinct episodes showed that the variability of colicine and antibiogram characters, found among isolates within, respectively, 40 and 28 % of the episodes, was generally associated with loss or gain of a plasmid (‘colIb-KNP’) which determined production of colicine Ib and KNP resistance. These characters varied bothin vivoandin vitro. Variability of resistotype characters, on the other hand, was observed in only 28 (9%) episodes, 14 of which possibly represented examples of mixed or sequential infections.For accurate epidemiological tracing of strains ofSh. sonneiin a community, resistotyping, the technique showing the greatest discrimination and least variability of the four tested, should be included as the principal typing method.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3686 ◽  
Author(s):  
Tracy M. Bryan

Telomeres are DNA-protein complexes that cap and protect the ends of linear chromosomes. In almost all species, telomeric DNA has a G/C strand bias, and the short tandem repeats of the G-rich strand have the capacity to form into secondary structures in vitro, such as four-stranded G-quadruplexes. This has long prompted speculation that G-quadruplexes play a positive role in telomere biology, resulting in selection for G-rich tandem telomere repeats during evolution. There is some evidence that G-quadruplexes at telomeres may play a protective capping role, at least in yeast, and that they may positively affect telomere maintenance by either the enzyme telomerase or by recombination-based mechanisms. On the other hand, G-quadruplex formation in telomeric DNA, as elsewhere in the genome, can form an impediment to DNA replication and a source of genome instability. This review summarizes recent evidence for the in vivo existence of G-quadruplexes at telomeres, with a focus on human telomeres, and highlights some of the many unanswered questions regarding the location, form, and functions of these structures.


2009 ◽  
Vol 191 (15) ◽  
pp. 4916-4923 ◽  
Author(s):  
Chiaki Nakano ◽  
Hiroki Ozawa ◽  
Genki Akanuma ◽  
Nobutaka Funa ◽  
Sueharu Horinouchi

ABSTRACT Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.


Sign in / Sign up

Export Citation Format

Share Document