scholarly journals Epidemiology and molecular characterization of re-emerged virulent strains of Peste des Petits Ruminants virus among sheep in Kassala State, Eastern Sudan

2021 ◽  
Vol 74 (1) ◽  
Author(s):  
Fatima A. Saeed ◽  
Mohammed M.Gumaa ◽  
Sana A.Abdelaziz ◽  
Khalid A. Enan ◽  
Selma K. Ahmed ◽  
...  

Abstract Background Peste des Petits Ruminants (PPR) is a severe contagious viral disease, which mainly affects small ruminants. PPR is caused by a Morbillivirus that belongs to the family Paramyxoviridae. In this study 12 suspected PPR outbreaks among sheep and goats were investigated in four localities in Kassala State, Eastern Sudan, during 2015—2017. The causative agent was confirmed by a Sandwich Enzyme-Linked Immunosorbent Assay (sELISA), and a Reverse Transcription Polymerase Chain Reaction (RT-PCR) targeting a partial sequence of nucleocapsid protein gene (N- gene) and a partial sequence of fusion protein gene (F- gene). Sequencing and phylogenetic analysis were carried out on six N- gene based RT-PCR products selected from two outbreaks occurred on border and inner localities of Kassala State to determine the circulating lineages of PPRV strains. Identity percentages were determined between isolates in this study and previous Sudanese, and other (African and Asian) isolates which clustered along with them. Results Out of 30 samples, 22 (73.3%) were positive using sandwich ELISA. From 22 s ELISA positive samples, 17 (77.3%) were positive by Ngene based RT-PCR and only 7(43.8%) out of 16 positive samples by N gene based RT-PCR were positive using Fgene based RT-PCR. The sequencing and phylogenetic analysis confirmed involvement of the lineage IV of PPRV in outbreaks among small ruminants in Kassala State and high identity percentage between our isolates and previous Sudanese and other (African and Asian) isolates. Conclusions The present study demonstrates that genetic relationship between PPRV strains circulating in sheep in Kassala State, Eastern Sudan, and PPRV strains characterized as lineage IV in neighboring African countries such as Eretria,Ethiopia, Egypt, and other Asian countries

2019 ◽  
Vol 70 (3) ◽  
pp. 1617
Author(s):  
A. SAIT ◽  
S.B. DAGALP

The aim of the study is to determine the epizootiology of Peste des petits ruminants (PPR) in Turkey during 2010-2012, using molecular genotyping. Samples of blood (n=193), swab (n=7) and tissue (n=374) were collected from sheep (n=473) and goats (n=101) suspected of having PPRV infection from an outbreak in 50 provinces of Turkey during 2010–2012. These samples (n=574) were tested using reverse transcription polymerase chain reaction (RT-PCR) and real-time reverse transcriptionpolymerase chain reaction (RT-qPCR) targeting selected parts of the fusion (F) and the nucleocapsid (N) genes. Positivity ratios were 35.5%, 39.3%, and 44.4% with regards to RT-PCR targeting the F and the N genes, and RT-Qpcr targeting the latter gene (N), respectively. The overall positivity rate was 45.8%. For sequence analyses, F-gene (n=53) and N-gene (n=60) positive samples representing different provinces were selected. After phylogenetic analysis, the circulating PPRV was located in lineage IV according to two gene regions. The F-gene partial sequence analysis at the nucleotide level showed 98.2-100% resemblence among 53 for F-gene, and 97.9-98.9% and 91.3-92.4% to Turkey2000 and Nigeria75/1 sequences, respectively. The N-gene partial sequence analysis at the nucleotide level showed 94.2-100% resemblence among 60 for N-gene, and 94.2-98.3% and 89.3-90.9% to Turkey2000 and Nigeria75/1 sequences, respectively. The result of this study indicates that PPRV infection is enzootic in Turkey, and belongs to the lineage IV, which is present in three haplogroup. The phylogenic analysis indicates the spread of the virus is associated with unauthorized movement of stock.


Author(s):  
Samuel Mantip ◽  
Melvyn Quan ◽  
David Shamaki ◽  
Moritz Van Vuuren

Peste-des-petits-ruminants virus (PPRV) is a highly contagious, fatal and economically important viral disease of small ruminants that is still endemic and militates against the production of sheep and goats in endemic areas of the world. The aim of this study was to describe the viral strains within the country. This was carried out by collecting tissue and swab samples from sheep and goats in various agro-ecological zones of Nigeria. The phylogeny of archived PPRV strains or isolates and those circulating and causing recent outbreaks was determined by sequencing of the nucleoprotein (N)-gene. Twenty tissue and swab samples from apparently healthy and sick sheep and goats were collected randomly from 18 states, namely 3 states in each of the 6 agro-ecological zones visited. A total of 360 samples were collected. A total of 35 samples of 360 (9.7%) tested positive by reverse transcriptase–polymerase chain reaction, of which 25 were from oculo-nasal swabs and 10 were from tissue samples. Neighbour-joining phylogenetic analysis using Phylogenetic Analysis Using Parsimony (PAUP) identified four different lineages, that is, lineages I, II, III and IV. Interestingly, the Nigerian strains described in this study grouped in two separate major lineages, that is, lineages II and IV. Strains from Sokoto, Oyo, Plateau and Ondo states grouped according to the historical distribution of PPRV together with the Nigerian 75/1 strain of lineage II, while other strains from Sokoto, Oyo, Plateau, Akwa-Ibom, Adamawa, Kaduna, Lagos, Bauchi, Niger and Kano states grouped together with the East African and Asian strains of lineage IV. This finding confirms that both lineage II and IV strains of PPRV are circulating in Nigeria. Previously, only strains of lineage II were found to be present in the country.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Faisal Polis Khoran ◽  
Elham Potros Candlan ◽  
Abdulwahed Ahmed Hassan ◽  
Fanar A. Isihak ◽  
Amir Abdulmawjood ◽  
...  

Abstract Background Peste des Petits Ruminants (PPR) is an acute or peracute contagious transboundary viral disease that mainly affects caprine and ovine and causes significant economic impact in developing countries. After two PPR virus outbreaks in 2011 and 2014, an investigation, from August 2015 to September 2016, was carried out in Northern Iraq when an increased morbidity and mortality rates were reported in the domestic and captive wild goats. In the present study, ten domestic goat farms and seven captive wild goat herds located in seven geographical areas of Northern Iraq were clinically, pathologically, serologically and genotypically characterized to determine the prevalence and potential cause of PPR virus outbreak. Results The outbreak occurred with rate of morbidity (26.1%) and mortality (11.1%) in domestic goat farms as compared to captive wild goat herds where relatively high mortality (42.9%) and low morbidity (10.9%) rates were recorded. Based on the clinical symptoms (mucopurulent nasal discharges, ulceration and erosion of oral mucosa, profuse watery diarrhea) and necropsy (hemorrhage and congestion on mucous membranes of the colon and rectum with zebra stripes lesions) results, overall, the serological test findings revealed a high frequency (47.9%) of positive samples for anti-PPRV nucleoprotein antibodies. Furthermore, the nucleoprotein (N) gene was detected in 63.2 and 89.1% of samples using conventional and reverse transcription real-time quantitative PCR assays. A phylogenetic analysis of N gene amino acid sequences clustered with the reference strain revealed lineage IV similar to the strains isolated in 2011 and 2014, respectively. However, two sub-types of lineage IV (I and II), significantly distinct from the previous strains, were also observed. Conclusion The phylogenetic analysis suggests that movements of goats are possible cause and one of the important factors responsible for the spread of virus across the region. The study results would help in improving farm management practices by establishing a PPR virus eradication program using regular monitoring and vaccination program to control and mitigate the risk of re-emergence of PPR virus infection in domestic and captive wild goats in Iraq.


2010 ◽  
Vol 138 (8) ◽  
pp. 1211-1214 ◽  
Author(s):  
J. KINNE ◽  
R. KREUTZER ◽  
M. KREUTZER ◽  
U. WERNERY ◽  
P. WOHLSEIN

SUMMARYRecurrence of peste des petits ruminants (PPR) was diagnosed in the United Arabian Emirates in several wild ruminants confirmed by morphological, immunohistochemical, serological and molecular findings. Phylogenetic analysis revealed that the virus strain belongs to lineage IV, which is different to some previously isolated PPR strains from the Arabian Peninsula. This study shows that wild ruminants may play an important epidemiological role as virus source for domestic small ruminants.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 838
Author(s):  
Bryony A. Jones ◽  
Mana Mahapatra ◽  
Daniel Mdetele ◽  
Julius Keyyu ◽  
Francis Gakuya ◽  
...  

Peste des petits ruminants (PPR) is a viral disease of goats and sheep that occurs in Africa, the Middle East and Asia with a severe impact on livelihoods and livestock trade. Many wild artiodactyls are susceptible to PPR virus (PPRV) infection, and some outbreaks have threatened endangered wild populations. The role of wild species in PPRV epidemiology is unclear, which is a knowledge gap for the Global Strategy for the Control and Eradication of PPR. These studies aimed to investigate PPRV infection in wild artiodactyls in the Greater Serengeti and Amboseli ecosystems of Kenya and Tanzania. Out of 132 animals purposively sampled in 2015–2016, 19.7% were PPRV seropositive by ID Screen PPR competition enzyme-linked immunosorbent assay (cELISA; IDvet, France) from the following species: African buffalo, wildebeest, topi, kongoni, Grant’s gazelle, impala, Thomson’s gazelle, warthog and gerenuk, while waterbuck and lesser kudu were seronegative. In 2018–2019, a cross-sectional survey of randomly selected African buffalo and Grant’s gazelle herds was conducted. The weighted estimate of PPRV seroprevalence was 12.0% out of 191 African buffalo and 1.1% out of 139 Grant’s gazelles. All ocular and nasal swabs and faeces were negative by PPRV real-time reverse transcription-polymerase chain reaction (RT-qPCR). Investigations of a PPR-like disease in sheep and goats confirmed PPRV circulation in the area by rapid detection test and/or RT-qPCR. These results demonstrated serological evidence of PPRV infection in wild artiodactyl species at the wildlife–livestock interface in this ecosystem where PPRV is endemic in domestic small ruminants. Exposure to PPRV could be via spillover from infected small ruminants or from transmission between wild animals, while the relatively low seroprevalence suggests that sustained transmission is unlikely. Further studies of other major wild artiodactyls in this ecosystem are required, such as impala, Thomson’s gazelle and wildebeest.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 102-102 ◽  
Author(s):  
S. Adkins ◽  
L. Breman ◽  
C. A. Baker ◽  
S. Wilson

Blackberry lily (Belamcanda chinensis (L.) DC.) is an herbaceous perennial in the Iridaceae characterized by purple-spotted orange flowers followed by persistent clusters of black fruit. In July 2002, virus-like symptoms including chlorotic ringspots and ring patterns were observed on blackberry lily leaves on 2 of 10 plants in a south Florida ornamental demonstration garden. Inclusion body morphology suggested the presence of a Tospovirus. Tomato spotted wilt virus (TSWV) was specifically identified by serological testing using enzyme-linked immunosorbent assay (Agdia, Elkhart, IN). Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579 base pair region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. Since these 2-year-old plants were grown on-site from seed, they were likely inoculated by thrips from a nearby source. Together with a previous observation of TSWV in north Florida nursery stock (L. Breman, unpublished), this represents, to our knowledge, the first report of TSWV infection of blackberry lily in North America although TSWV was observed in plants of this species in Japan 25 years ago (2). References: (1) S. Adkins, and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) T. Yamamoto and K.-I. Ohata. Bull. Shikoku Agric. Exp. Stn. 30:39, 1977.


2020 ◽  
Vol 40 (04) ◽  
pp. 494-498
Author(s):  
Zuleyha Pestil

The aim of this study was to investigate the molecular epidemiology of peste des petits ruminants (PPR) infections associated with abortion in sheep and goat samples from the Marmara region of Turkey during 2018. The study was carried out from 116 sheep and 26 goat abortion cases. PPR virus (PPRV) detection in these samples was performed using real-time RT-PCR (Q-RT-PCR). Then, sequence analysis was performed from PPRV positive samples. Q-RT-PCR results demonstrated that 12 (10.34%) out of 116 sheep abortion samples and 3 (11.53%) out of 26 goat abortion samples were positive for PPRV genome. The sequence results of RT-PCR positive products revealed that the viruses causing the cases belong to lineage IV. Furthermore, molecular analysis showed that present cases were not related to PPRV vaccine strains or its mutants. Marmara region, where this study was conducted, is a neighbour of European countries such as Bulgaria and Greece. The first PPR cases in Europe were reported from Bulgaria at the beginning of 2018 and subsequently, other cases also reported before are mentioned in the present study. This study provides valuable information to understand the epidemiology of recently emerged PPRV cases in Europe and Turkey. Furthermore, because of the prevalence of PPRV in abortion samples in this study, these results suggest that PPRV may be one of the possible etiologic agents of abortions in sheep and goat. However, for clarification of the relationship between abortion and PPRV, there is need more robust epidemiological data and experimental infection studies


2021 ◽  
Vol 77 (05) ◽  
pp. 226-231
Author(s):  
WIESŁAW NIEDBALSKI ◽  
ANDRZEJ FITZNER ◽  
KRZYSZTOF BULENGER ◽  
ANDRZEJ KĘSY

Peste des petits ruminants (PPR) is a highly contagious and economically important, viral disease of small ruminants caused by the peste des petits ruminants virus (PPRV), which belongs to the genus Morbilivirus in the family Paramyxoviridae. PPR control is achieved mostly through vaccination and/or slaughter of susceptible animals coupled with clinical or laboratory-based diagnosis. Since clinical signs of PPR are not disease-specific and clinical diagnostics is not reliable, it should be confirmed by laboratory testing. Laboratory confirmation of clinical suspicions is made by detection of PPRV in blood, swabs or post-mortem tissues through classical virus isolation (VI), agar gel immunodiffusion (AGID)/agar gel precipitation test (AGPT), counter-immunoelectrophoresis (CIE), immunoperoxidase test (IPT) or enzyme-linked immunosorbent (ELISA) assays. However, these conventional methods have been superseded by more rapid, sensitive and accurate molecular diagnostic techniques based on the amplification of parts of either nucleocapsid (N) or fusion (F) protein gene, such as RT-PCR, real-time RT-PCR, reverse transcription loop-mediated isothermal amplification (RT-LAMP), reverse transcription recombinase polymerase amplification (RT-RPA) and Oxford nanopore MinION technology. Although these molecular diagnostic assays are accurate, rapid and sensitive, they have to be performed in laboratory settings, and samples must be transported under appropriate conditions from the field to the laboratory, which can delay the confirmation of PPRV infection. The recently developed immunochromatographic lateral flow device (IC-LFD) assay can be used in the field (“pen-side”) without the need for expensive equipment, so a well-established laboratory is not required. The control and eventual eradication of PPR is now one of the top priorities for the Food and Agriculture Organization (FAO) and the World Organization for Animal Health (OIE). In 2015, the international community agreed on a global strategy for PPR eradication, setting 2030 as a target date for elimination of the disease


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1133 ◽  
Author(s):  
Claudia Schulz ◽  
Christine Fast ◽  
Ulrich Wernery ◽  
Jörg Kinne ◽  
Sunitha Joseph ◽  
...  

Peste-des-petits-ruminants virus (PPRV) causes a severe respiratory disease in small ruminants. The possible impact of different atypical host species in the spread and planed worldwide eradication of PPRV remains to be clarified. Recent transmission trials with the virulent PPRV lineage IV (LIV)-strain Kurdistan/2011 revealed that pigs and wild boar are possible sources of PPRV-infection. We therefore investigated the role of cattle, llamas, alpacas, and dromedary camels in transmission trials using the Kurdistan/2011 strain for intranasal infection and integrated a literature review for a proper evaluation of their host traits and role in PPRV-transmission. Cattle and camelids developed no clinical signs, no viremia, shed no or only low PPRV-RNA loads in swab samples and did not transmit any PPRV to the contact animals. The distribution of PPRV-RNA or antigen in lymphoid organs was similar in cattle and camelids although generally lower compared to suids and small ruminants. In the typical small ruminant hosts, the tissue tropism, pathogenesis and disease expression after PPRV-infection is associated with infection of immune and epithelial cells via SLAM and nectin-4 receptors, respectively. We therefore suggest a different pathogenesis in cattle and camelids and both as dead-end hosts for PPRV.


2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Sophia Hodgson ◽  
Katy Moffat ◽  
Holly Hill ◽  
John T. Flannery ◽  
Simon P. Graham ◽  
...  

ABSTRACTPeste des petits ruminants (PPR) is a severe disease of goats and sheep that is widespread in Africa, the Middle East, and Asia. Several effective vaccines exist for the disease, based on attenuated strains of the virus (PPRV) that causes PPR. While the efficacy of these vaccines has been established by use in the field, the nature of the protective immune response has not been determined. In addition, while the vaccine derived from PPRV/Nigeria/75/1 (N75) is used in many countries, those developed in India have never been tested for their efficacy outside that country. We have studied the immune response in goats to vaccination with either N75 or the main Indian vaccine, which is based on isolate PPRV/India/Sungri/96 (S96). In addition, we compared the ability of these two vaccines, in parallel, to protect animals against challenge with pathogenic viruses from the four known genetic lineages of PPRV, representing viruses from different parts of Africa, as well as Asia. These studies showed that, while N75 elicited a stronger antibody response than S96, as measured by both enzyme-linked immunosorbent assay and virus neutralization, S96 resulted in more pronounced cellular immune responses, as measured by virus antigen-induced proliferation and interferon gamma production. While both vaccines induced comparable numbers of PPRV-specific CD8+T cells, S96 induced a higher number of CD4+T cells specifically responding to virus. Despite these quantitative and qualitative differences in the immune responses following vaccination, both vaccines gave complete clinical protection against challenge with all four lineages of PPRV.IMPORTANCEDespite the widespread use of live attenuated PPRV vaccines, this is the first systematic analysis of the immune response elicited in small ruminants. These data will help in the establishment of the immunological determinants of protection, an important step in the development of new vaccines, especially DIVA vaccines using alternative vaccination vectors. This study is also the first controlled test of the ability of the two major vaccines used against virulent PPRV strains from all genetic lineages of the virus, showing conclusively the complete cross-protective ability of these vaccines.


Sign in / Sign up

Export Citation Format

Share Document