scholarly journals Gene flow from herbicide resistant transgenic soybean to conventional soybean and wild soybean

2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Hye Jin Kim ◽  
Do Young Kim ◽  
Ye Seul Moon ◽  
In Soon Pack ◽  
Kee Woong Park ◽  
...  

Abstract Gene flow from transgenic crops to conventional cultivars or wild relatives is a major environmental and economic concern in many countries. South Korea is one of the major importer of transgenic crops for food and feed, although commercial cultivation of transgenic crops is not yet allowed in this country. This study evaluated gene flow from the herbicide glyphosate- and glufosinate-resistant transgenic soybean (Glycine max) to five non-transgenic soybean cultivars and three accessions of wild soybean (Glycine soja). Field trials were conducted over 2 years, and gene flow was monitored up to 10 m distance from the pollen source. The results indicated that the detectable rate of gene flow from transgenic to conventional soybeans varied between 0 and 0.049% in both 2014 and 2015 field trials, while no hybrids were detected among wild soybean progenies. The highest rate of gene flow was found in the progenies of the Bert cultivar, which exhibited the longest period of flowering synchronization between the pollen donor and the recipient. In addition, overall gene flow rates declined with increased distance from the transgenic soybean plot. Gene flow was observed up to 3 m and 8 m from the transgenic soybean plot in 2014 and 2015, respectively. Our results may be useful for developing measures to prevent gene flow from transgenic soybean.

2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Do Young Kim ◽  
Min Sik Eom ◽  
Hye Jin Kim ◽  
Eun Mi Ko ◽  
In-Soon Pack ◽  
...  

Abstract Soybean has been recognized as a useful platform for heterologous protein production. This study compared the pollen characteristics of transgenic and non-transgenic soybean and investigated the rate of gene flow from transgenic soybean events, developed to obtain recombinant proteins (such as human epidermal growth factor, insulin-like growth factor 1, or thioredoxin) for use in the skin care industry, to non-transgenic soybean under field conditions, and determined the distance at which gene flow could occur. The lack of significant differences in pollen grain size, viability and pollen germination rates between transgenic and non-transgenic cultivars indicates that the overexpression of transgenes did not alter pollen characteristics in soybean. The highest rates of gene flow from the three transgenic soybean events to non-transgenic soybean ranged from 0.22 to 0.46% at the closest distance (0.5 m). Gene flow was observed up to 13.1 m from the transgenic plots. Our data fell within the ranges reported in the literature and indicate that an isolation distance greater than at least 13 m from transgenic soybean is required to prevent within-crop gene flow in soybean. As the potential markets for transgenic crops as a recombinant protein factory increase, gene flow from transgenic to non-transgenic conventional crops will become a key decision factor for policy makers during the approval process of transgenic crops. Our study may provide useful baseline data for the prevention of transgenic soybean seed contamination caused by transgene flow.


2005 ◽  
Vol 80 (2) ◽  
pp. 71-84 ◽  
Author(s):  
S.I. Warwick ◽  
H.J. Beckie ◽  
E. Small

Over 25 000 transgenic field trials were conducted globally from 1986-1997, and many transgenic crops, including soybean (Glycine max), maize (Zea mays), tobacco (Nicotiana tabaccum), cotton (Gossypium hirsutum), canola (Brassica napus, B. rapa), tomato (Lycopersicon esculentum) and potato (Solarium tuberosum) have been commercially released. There has been a high adoption rate, with at least 28 million ha reported for 1998, with herbicide- and insect-resistant plants occupying 71 and 28% of the releases, respectively. The current status of commercial production of transgenic crops in Canada is summarized. Transgenic crops have the potential to change weed communities/populations in three principal ways, via: 1 ) escape and proliferation of the transgenic plants as 'weedy' volunteers with subsequent displacement of the crop, weed and/or natural vegetation; 2) hybridization with and transgene infiltration into related weedy and/or wild species, resulting in invigorated weeds and/or alteration of natural gene frequencies in these species; and 3) genetic changes in populations of unrelated species, as a result of changes to the environment, in particular herbicide-resistant (HR) transgenic crops and the development of HR weeds. Potential risk can be estimated a priori using knowledge of the systematics of crop/wild/weed complexes. Risk must be assessed on a case-by-case basis for each crop, each country/ecological region, and for each trait. Potential weed risks will be greater if crop volunteers are predisposed to becoming weedy, are well adapted to the Canadian climate and if sexually compatible wild species are present.


Author(s):  
Myung-Shin Kim ◽  
Roberto Lozano ◽  
Ji Hong Kim ◽  
Dong Nyuk Bae ◽  
Sang-Tae Kim ◽  
...  

AbstractAs a predominant plant protein and oil source for both food and feed, soybean is unique in that both domesticated and wild types are predominantly selfing. Here we present a genome-wide variation map of 781 soybean accessions that include 418 domesticated (Glycine max) and 345 wild (Glycine soja) accessions and 18 of their natural hybrids. We identified 10.5 million single nucleotide polymorphisms and 5.7 million small indels that contribute to within- and between-population variations. We describe improved detection of domestication-selective sweeps and drastic reduction of overall deleterious alleles in domesticated soybean relative to wild soybean in contrast to the cost of domestication hypothesis. This resource enables the marker density of existing data sets to be increased to improve the resolution of association studies.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1001
Author(s):  
Jagadeesh Sundaramoorthy ◽  
Gyu Tae Park ◽  
Hyun Jo ◽  
Jeong-Dong Lee ◽  
Hak Soo Seo ◽  
...  

The enzyme flavonoid 3′,5′-hydroxylase (F3′5′H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3′5′H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower’s pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A304S) in a highly conserved SRS4 domain of F3′5′H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3′5′H activity rather than non-functional activity, which thereby results in its pinkish-white color.


2021 ◽  
Vol 19 (1) ◽  
pp. 35-43
Author(s):  
Awatsaya Chotekajorn ◽  
Takuyu Hashiguchi ◽  
Masatsugu Hashiguchi ◽  
Hidenori Tanaka ◽  
Ryo Akashi

AbstractWild soybean (Glycine soja) is a valuable genetic resource for soybean improvement. Seed composition profiles provide beneficial information for the effective conservation and utilization of wild soybeans. Therefore, this study aimed to assess the variation in free amino acid abundance in the seeds of wild soybean germplasm collected in Japan. The free amino acid content in the seeds from 316 accessions of wild soybean ranged from 0.965 to 5.987 mg/g seed dry weight (DW), representing a 6.2-fold difference. Three amino acids had the highest coefficient of variation (CV): asparagine (1.15), histidine (0.95) and glutamine (0.94). Arginine (0.775 mg/g DW) was the predominant amino acid in wild soybean seeds, whereas the least abundant seed amino acid was glutamine (0.008 mg/g DW). A correlation network revealed significant positive relationships among most amino acids. Wild soybean seeds from different regions of origin had significantly different levels of several amino acids. In addition, a significant correlation between latitude and longitude of the collection sites and the total free amino acid content of seeds was observed. Our study reports diverse phenotypic data on the free amino acid content in seeds of wild soybean resources collected from throughout Japan. This information will be useful in conservation programmes for Japanese wild soybean and for the selection of accessions with favourable characteristics in future legume crop improvement efforts.


Author(s):  
Jin Yue Liu ◽  
Ze Wen Sheng ◽  
Yu Qi Hu ◽  
Qi Liu ◽  
Sheng Qiang ◽  
...  

AbstractThe releasing of transgenic soybeans (Glycine max (L.) Merr.) into farming systems raises concerns that transgenes might escape from the soybeans via pollen into their endemic wild relatives, the wild soybean (Glycine soja Sieb. et Zucc.). The fitness of F1 hybrids obtained from 10 wild soybean populations collected from China and transgenic glyphosate-resistant soybean was measured without weed competition, as well as one JLBC-1 F1 hybrid under weed competition. All crossed seeds emerged at a lower rate from 13.33–63.33%. Compared with those of their wild progenitors, most F1 hybrids were shorter, smaller, and with decreased aboveground dry biomass, pod number, and 100-seed weight. All F1 hybrids had lower pollen viability and filled seeds per plant. Finally, the composite fitness of nine F1 hybrids was significantly lower. One exceptional F1 hybrid was IMBT F1, in which the composite fitness was 1.28, which was similar to that of its wild progenitor due to the similarities in pod number, increased aboveground dry biomass, and 100-seed weight. Under weed competition, plant height, aboveground dry biomass, pod number per plant, filled seed number per plant, and 100-seed weight of JLBC-1 F1 were lower than those of the wild progenitor JLBC-1. JLBC-1 F1 hybrids produced 60 filled seeds per plant. Therefore, F1 hybrids could emerge and produce offspring. Thus, effective measures should be taken to prevent gene flow from transgenic soybean to wild soybean to avoid the production F1 hybrids when releasing transgenic soybean in fields in the future.


2014 ◽  
Vol 37 (6) ◽  
pp. 449-456 ◽  
Author(s):  
Liang Zhao ◽  
Miaochun Fan ◽  
Dehui Zhang ◽  
Ruiping Yang ◽  
Feilong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document