scholarly journals Developing horizontal subsurface flow constructed wetland using pumice and Chrysopogon zizanioides for tannery wastewater treatment

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mekonnen Birhanie Aregu ◽  
Seyoum Leta Asfaw ◽  
Mohammed Mazharuddin Khan

Abstract Background High-strength wastewater defined by elevated levels of hazardous pollutants measured in BOD, heavy metals, nutrients and other toxic substances. This kind of wastewater discharged to water body without treatment from different industrial sectors that adversely affects aquatic environment and downstream water consumers. The general objective of this study is to investigate efficient substrate with selected plant type for constructed wetland to remove hazardous pollutants from tannery wastewater. This study was conducted at Modjo town, Modjo tannery PLC. Plug flow experimental study design was carried out. The substrate (Pumice) was collected around the study area and chemical characteristics were determined. Chrysopogon zizanioides was planted and grown for 5 months before running tannery wastewater for the treatment. The composite wastewater was introduced to the constructed wetland from Modjo leather industry, Ethiopia. The physicochemical analysis of the sample wastewater was done before and after treatment at four different hydraulic retention time. Results Characterization of the untreated tannery wastewater revealed that the mean concentration of BOD5, COD, TSS, PO4-P, TP, NO3-N, TN and total chromium were 1641 ± 373.6, 6953.33 ± 339.4, 1868 ± 863.1, 88.06 ± 40.8, 144.53 ± 20.8, 116.66 ± 26.6, 650.33 ± 93.6 and 18.33 ± 6.7 mg/l respectively beyond the permissible limits. The maximum removal efficiency of the constructed wetland in pumice bed revealed that BOD5 at HRT 7and 9 days (96.42%, 96.30%), COD at HRT 5 and 7 days (96.76%, 96.91%), NO3-N at HRT 5 and 7 days (99.99%, 99.68%), TN (98.67%, 99.00%), PO4-P HRT 7and 9 days (96.97%,100%), TP at HRT 5 and 7 days (94.79%, 96.17%) and total Chromium at HRT 5 and 7 days (98.36%, 98.91%) respectively. Whereas, the removal efficiency of constructed wetland bed with gravel substrate used as a control subject with similar condition to pumice showed lower performance. The result between pumice and gravel bed was tested for their significance difference using two sample t-test statistics. Based on the test statistics, the pumice substrate perform better than the gravel significantly at 95% confidence interval, p-value = 0.01. Conclusion Pumice substrate and Chrysopogon zizanioides have a potential ability to remove hazardous pollutants from tannery wastewater in horizontal subsurface constructed wetlands.

2021 ◽  
Author(s):  
Mekonnen Birhanie Aregu

Abstract Background: High-strength wastewater defined by elevated levels of hazardous pollutants measured in BOD, heavy metals, nutrients and other toxic substances. This kind of wastewater discharged to water body without treatment from different industrial sectors that adversely affects aquatic environment and downstream water consumers. The general objective of this study is to investigate efficient substrate with selected plant type for constructed wetland to remove hazardous pollutants from tannery wastewater. This study was conducted at Modjo town from 2016 to 2018. Plug flow experimental study design was carried out. The substrate (Pumice) was collected around the study area and chemical characteristics were determined. Chrysopogon zizanioides was planted and grown for five months before running tannery wastewater for the treatment. The composite wastewater was introduced to the constructed wetland from Modjo leather industry, Ethiopia. The physicochemical analysis of the sample wastewater was done before and after treatment at four different hydraulic retention time.Results: Characterization of the untreated tannery wastewater revealed that the mean concentration of BOD5, COD, TSS, PO4-P, TP, NO3-N, TN and total chromium were 1641±373.6, 6953.33±339.4, 1868±863.1, 88.06 ±40.8, 144.53 ±20.8, 116.66 ±26.6, 650.33 ±93.6 and 18.33±6.7 mg/l respectively beyond the permissible limits. The maximum removal efficiency of the constructed wetland in pumice bed revealed that BOD5 at HRT 7and 9 days (96.42%, 96.30%), COD at HRT 5 and 7 days (96.76%, 96.91%), NO3-N at HRT 5 and 7 days (99.99%, 99.68%), TN (98.67%, 99.00%), PO4-P HRT 7and 9 days (96.97%,100%), TP at HRT 5 and 7 days (94.79%, 96.17%) and total Chromium at HRT 5 and 7 days (98.36%, 98.91%) respectively. Whereas, the removal efficiency of constructed wetland bed with gravel substrate used as a control subject with similar condition to pumice showed lower performance. The result between pumice and gravel bed was tested for their significance difference using two sample t-test statistics. Based on the test statistics, the pumice substrate perform better than the gravel significantly at 95% confidence interval, p-value = 0.01.Conclusion: Pumice substrate and Chrysopogon zizanioides have a potential ability to remove hazardous pollutants from tannery wastewater in horizontal subsurface constructed wetlands.


2021 ◽  
Author(s):  
Mekonnen Birhanie Aregu ◽  
Seyoum Leta Asfaw ◽  
Mohammed Mazharuddin Khan

Abstract Background: High-strength wastewater defined by elevated levels of hazardous pollutants measured in BOD, heavy metals, nutrients and other toxic substances. This kind of wastewater discharged to water body without treatment from different industrial sectors that adversely affects aquatic environment and downstream water consumers. The general objective of this study is to investigate efficient substrate with selected plant type for constructed wetland to remove hazardous pollutants from tannery wastewater. This study was conducted at Modjo town from 2016 to 2018. Plug flow experimental study design was carried out. The substrate (Pumice) was collected around the study area and chemical characteristics were determined. Chrysopogon zizanioides was planted and grown for five months before running tannery wastewater for the treatment. The composite wastewater was introduced to the constructed wetland from Modjo leather industry, Ethiopia. The physicochemical analysis of the sample wastewater was done before and after treatment at four different hydraulic retention time. Results: Characterization of the untreated tannery wastewater revealed that the mean concentration of BOD5, COD, TSS, PO4-P, TP, NO3-N, TN and total chromium were 1641±373.6, 6953.33±339.4, 1868±863.1, 88.06 ±40.8, 144.53 ±20.8, 116.66 ±26.6, 650.33 ±93.6 and 18.33±6.7 mg/l respectively beyond the permissible limits. The maximum removal efficiency of the constructed wetland in pumice bed revealed that BOD5 at HRT 7and 9 days (96.42%, 96.30%), COD at HRT 5 and 7 days (96.76%, 96.91%), NO3-N at HRT 5 and 7 days (99.99%, 99.68%), TN (98.67%, 99.00%), PO4-P HRT 7and 9 days (96.97%,100%), TP at HRT 5 and 7 days (94.79%, 96.17%) and total Chromium at HRT 5 and 7 days (98.36%, 98.91%) respectively. Whereas, the removal efficiency of constructed wetland bed with gravel substrate used as a control subject with similar condition to pumice showed lower performance. The result between pumice and gravel bed was tested for their significance difference using two sample t-test statistics. Based on the test statistics, the pumice substrate perform better than the gravel significantly at 95% confidence interval, p-value = 0.01. Conclusion: Pumice substrate and Chrysopogon zizanioides have a potential ability to remove hazardous pollutants from tannery wastewater in horizontal subsurface constructed wetlands.


2021 ◽  
Vol 9 ◽  
Author(s):  
Agegnehu Alemu ◽  
Nigus Gabbiye ◽  
Brook Lemma

Tannery wastewater is composed of a complex mixture of organic and inorganic components from various processes that can critically pollute the environment, especially water bodies if discharged without treatment. In this study, integrated vesicular basalt rock and local plant species were used to establish a horizontal subsurface flow constructed wetland system and to investigate the treatment efficiency of tannery wastewater. Four pilot units were vegetated with P. purpureum, T. domingensis, C. latifolius, and E. pyramidalis, and a fifth unit was left unvegetated (control). The constructed wetland units in horizontal subsurface flow systems were effective in removing total chromium (Cr), chemical oxygen demand (COD), and 5-day biological oxygen demand (BOD5) from the inflow tannery wastewater. The removal efficiency reached up to 99.38, 84.03, and 80.32% for total Cr, COD, and BOD5, respectively, in 6 days of hydraulic retention time (HRT). The removal efficiency of total suspended solid (TSS), total phosphorus (TP), and nitrate (NO3−) of the constructed wetland units reached a maximum of 70.59, 62.32, and 71.23%, respectively. This integrated system was effective for treating tannery wastewater, which is below the Ethiopian surface water standard discharge limit set to BOD5 (200 mg L−1), COD (500 mg L−1), total Cr (2 mg L−1), NO3− (20 mg L−1), TSS (50 mg L−1), and TP (10 mg L−1).


2021 ◽  
Vol 14 ◽  
pp. 117862212110281
Author(s):  
Ahmed S. Mahmoud ◽  
Nouran Y. Mohamed ◽  
Mohamed K. Mostafa ◽  
Mohamed S. Mahmoud

Tannery industrial effluent is one of the most difficult wastewater types since it contains a huge concentration of organic, oil, and chrome (Cr). This study successfully prepared and applied bimetallic Fe/Cu nanoparticles (Fe/Cu NPs) for chrome removal. In the beginning, the Fe/Cu NPs was equilibrated by pure aqueous chrome solution at different operating conditions (lab scale), then the nanomaterial was applied in semi full scale. The operating conditions indicated that Fe/Cu NPs was able to adsorb 68% and 33% of Cr for initial concentrations of 1 and 9 mg/L, respectively. The removal occurred at pH 3 using 0.6 g/L Fe/Cu dose, stirring rate 200 r/min, contact time 20 min, and constant temperature 20 ± 2ºC. Adsorption isotherm proved that the Khan model is the most appropriate model for Cr removal using Fe/Cu NPs with the minimum error sum of 0.199. According to khan, the maximum uptakes was 20.5 mg/g Cr. Kinetic results proved that Pseudo Second Order mechanism with the least possible error of 0.098 indicated that the adsorption mechanism is chemisorption. Response surface methodology (RSM) equation was developed with a significant p-value = 0 to label the relations between Cr removal and different experimental parameters. Artificial neural networks (ANNs) were performed with a structure of 5-4-1 and the achieved results indicated that the effect of the dose is the most dominated variable for Cr removal. Application of Fe/Cu NPs in real tannery wastewater showed its ability to degrade and disinfect organic and biological contaminants in addition to chrome adsorption. The reduction in chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), Cr, hydrogen sulfide (H2S), and oil reached 61.5%, 49.5%, 44.8%, 100%, 38.9%, 96.3%, 88.7%, and 29.4%, respectively.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1086
Author(s):  
Mario Licata ◽  
Roberto Ruggeri ◽  
Nicolò Iacuzzi ◽  
Giuseppe Virga ◽  
Davide Farruggia ◽  
...  

Dairy wastewater (DWW) contains large amounts of mineral and organic compounds, which can accumulate in soil and water causing serious environmental pollution. A constructed wetland (CW) is a sustainable technology for the treatment of DWW in small-medium sized farms. This paper reports a two-year study on the performance of a pilot-scale horizontal subsurface flow system for DWW treatment in Sicily (Italy). The CW system covered a total surface area of 100 m2 and treated approximately 6 m3 per day of wastewater produced by a small dairy farm, subsequent to biological treatment. Removal efficiency (RE) of the system was calculated. The biomass production of two emergent macrophytes was determined and the effect of plant growth on organic pollutant RE was recorded. All DWW parameters showed significant differences between inlet and outlet. For BOD5 and COD, RE values were 76.00% and 62.00%, respectively. RE for total nitrogen (50.70%) was lower than that of organic compounds. RE levels of microbiological parameters were found to be higher than 80.00%. Giant reed produced greater biomass than umbrella sedge. A seasonal variation in RE of organic pollutants was recorded due to plant growth rate Our findings highlight the efficient use of a CW system for DWW treatment in dairy-cattle farms.


2017 ◽  
Vol 77 (4) ◽  
pp. 988-998 ◽  
Author(s):  
Tadesse Alemu ◽  
Andualem Mekonnen ◽  
Seyoum Leta

Abstract In the present study, a pilot scale horizontal subsurface flow constructed wetland (CW) system planted with Phragmites karka; longitudinal profile was studied. The wetland was fed with tannery wastewater, pretreated in a two-stage anaerobic digester followed by a sequence batch reactor. Samples from each CW were taken and analyzed using standard methods. The removal efficiency of the CW system in terms of biological oxygen demand (BOD), chemical oxygen demand (COD), Cr and total coliforms were 91.3%, 90%, 97.3% and 99%, respectively. The removal efficiency for TN, NO3− and NH4+-N were 77.7%, 66.3% and 67.7%, respectively. Similarly, the removal efficiency of SO42−, S2− and total suspended solids (TSS) were 71.8%, 88.7% and 81.2%, respectively. The concentration of COD, BOD, TN, NO3−N, NH4+-N, SO42 and S2− in the final treated effluent were 113.2 ± 52, 56 ± 18, 49.3 ± 13, 22.75 ± 20, 17.1 ± 6.75, 88 ± 120 and 0.4 ± 0.44 mg/L, respectively. Pollutants removal was decreased in the first 12 m and increased along the CW cells. P. karka development in the first cell of CW was poor, small in size and experiencing chlorosis, but clogging was higher in this area due to high organic matter settling, causing a partial surface flow. The performance of the pilot CW as a tertiary treatment showed that the effluent meets the permissible discharge standards.


2005 ◽  
Vol 39 (1) ◽  
pp. 248-256 ◽  
Author(s):  
A. Wießner ◽  
U. Kappelmeyer ◽  
P. Kuschk ◽  
M. Kästner

2021 ◽  
Vol 15 ◽  
pp. 117863022110601
Author(s):  
Mekonnen Birhanie Aregu ◽  
Negasa Eshete Soboksa ◽  
Girum Gebremeskel Kanno

It is generally accepted that industrial wastewater like tannery effluent is high strength wastewater. The aim of this study was to examine the capacity of Vetiver grass for the treatment of high strength wastewater in a constructed wetland. Two constructed wetland beds were designed and one of them was not planted used as a control group. The grass was planted with 20 cm by 20 cm distance from each seedling. The biometric characteristics of Vetiver grass was evaluated by taking randomly selected clusters of the grass. The concentration of chromium in the extract of parts of the grass was determined by atomic absorption spectrophotometer. The Chromium bioaccumulation and Translocation factor was estimated. Composite samples before and after treatment of 4 different hydraulic retention time was collected. The physiochemical analysis of the wastewater has been carried out. The constructed wetland bed with Vetiver grass performed that, BOD, COD, NH4-N, NO3-N, TN, PO4-P, and TP were reduced at the retention time of 9 days by 91.9%, 96.3%, 62%, 86%, 88.7%, 96.3%, and 92.2% respectively. Chromium was also reduced by 97% at retention time of both 7 and 9 days over the planted bed. The bed with plant performs significantly better than without plant at P-value <.01. Therefore, Vetiver grass has a capacity to reclaim high strength industrial wastewater in tropical areas.


Sign in / Sign up

Export Citation Format

Share Document