scholarly journals Charting the complexity of the activated sludge microbiome through a hybrid sequencing strategy

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lei Liu ◽  
Yulin Wang ◽  
Yu Yang ◽  
Depeng Wang ◽  
Suk Hang Cheng ◽  
...  

Abstract Background Long-read sequencing has shown its tremendous potential to address genome assembly challenges, e.g., achieving the first telomere-to-telomere assembly of a gapless human chromosome. However, many issues remain unresolved when leveraging error-prone long reads to characterize high-complexity metagenomes, for instance, complete/high-quality genome reconstruction from highly complex systems. Results Here, we developed an iterative haplotype-resolved hierarchical clustering-based hybrid assembly (HCBHA) approach that capitalizes on a hybrid (error-prone long reads and high-accuracy short reads) sequencing strategy to reconstruct (near-) complete genomes from highly complex metagenomes. Using the HCBHA approach, we first phase short and long reads from the highly complex metagenomic dataset into different candidate bacterial haplotypes, then perform hybrid assembly of each bacterial genome individually. We reconstructed 557 metagenome-assembled genomes (MAGs) with an average N50 of 574 Kb from a deeply sequenced, highly complex activated sludge (AS) metagenome. These high-contiguity MAGs contained 14 closed genomes and 111 high-quality (HQ) MAGs including full-length rRNA operons, which accounted for 61.1% of the microbial community. Leveraging the near-complete genomes, we also profiled the metabolic potential of the AS microbiome and identified 2153 biosynthetic gene clusters (BGCs) encoded within the recovered AS MAGs. Conclusion Our results established the feasibility of an iterative haplotype-resolved HCBHA approach to reconstruct (near-) complete genomes from highly complex ecosystems, providing new insights into “complete metagenomics”. The retrieved high-contiguity MAGs illustrated that various biosynthetic gene clusters (BGCs) were harbored in the AS microbiome. The high diversity of BGCs highlights the potential to discover new natural products biosynthesized by the AS microbial community, aside from the traditional function (e.g., organic carbon and nitrogen removal) in wastewater treatment.

2020 ◽  
Vol 49 (D1) ◽  
pp. D639-D643 ◽  
Author(s):  
Kai Blin ◽  
Simon Shaw ◽  
Satria A Kautsar ◽  
Marnix H Medema ◽  
Tilmann Weber

Abstract Microorganisms produce natural products that are frequently used in the development of antibacterial, antiviral, and anticancer drugs, pesticides, herbicides, or fungicides. In recent years, genome mining has evolved into a prominent method to access this potential. antiSMASH is one of the most popular tools for this task. Here, we present version 3 of the antiSMASH database, providing a means to access and query precomputed antiSMASH-5.2-detected biosynthetic gene clusters from representative, publicly available, high-quality microbial genomes via an interactive graphical user interface. In version 3, the database contains 147 517 high quality BGC regions from 388 archaeal, 25 236 bacterial and 177 fungal genomes and is available at https://antismash-db.secondarymetabolites.org/.


2019 ◽  
Vol 8 (25) ◽  
Author(s):  
Stine Sofie Frank Nielsen ◽  
Simone Weiss ◽  
Seven Nazipi ◽  
Ian P. G. Marshall ◽  
Trine Bilde ◽  
...  

We present the high-quality draft genome sequence of Bacillus subtilis SB-14, isolated from the Namibian social spider Stegodyphus dumicola. In accordance with its antimicrobial activity, both known and potentially novel antimicrobial biosynthetic gene clusters were identified in the genome of SB-14.


Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Zachary Charlop-Powers ◽  
Jeremy G Owen ◽  
Boojala Vijay B Reddy ◽  
Melinda A Ternei ◽  
Denise O Guimarães ◽  
...  

Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites. Our data indicate a correlation between two factors, geographic distance and biome-type, and the biosynthetic diversity found in soil environments. By assigning reads to known gene clusters we identify hotspots of biomedically relevant biosynthetic diversity. These observations not only provide new insights into the natural world, they also provide a road map for guiding future natural products discovery efforts.


2021 ◽  
Author(s):  
Xuhua Mo ◽  
Tobias A. M. Gulder

Over 30 biosynthetic gene clusters for natural tetramate have been identified. This highlight reviews the biosynthetic strategies for formation of tetramic acid unit for the first time, discussing the individual molecular mechanism in detail.


2021 ◽  
Vol 69 ◽  
pp. 103-111
Author(s):  
Yaojie Gao ◽  
Yuchun Zhao ◽  
Xinyi He ◽  
Zixin Deng ◽  
Ming Jiang

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 424
Author(s):  
Osama G. Mohamed ◽  
Sadaf Dorandish ◽  
Rebecca Lindow ◽  
Megan Steltz ◽  
Ifrah Shoukat ◽  
...  

The antibiotic-resistant bacteria-associated infections are a major global healthcare threat. New classes of antimicrobial compounds are urgently needed as the frequency of infections caused by multidrug-resistant microbes continues to rise. Recent metagenomic data have demonstrated that there is still biosynthetic potential encoded in but transcriptionally silent in cultivatable bacterial genomes. However, the culture conditions required to identify and express silent biosynthetic gene clusters that yield natural products with antimicrobial activity are largely unknown. Here, we describe a new antibiotic discovery scheme, dubbed the modified crowded plate technique (mCPT), that utilizes complex microbial interactions to elicit antimicrobial production from otherwise silent biosynthetic gene clusters. Using the mCPT as part of the antibiotic crowdsourcing educational program Tiny Earth®, we isolated over 1400 antibiotic-producing microbes, including 62, showing activity against multidrug-resistant pathogens. The natural product extracts generated from six microbial isolates showed potent activity against vancomycin-intermediate resistant Staphylococcus aureus. We utilized a targeted approach that coupled mass spectrometry data with bioactivity, yielding a new macrolactone class of metabolite, desertomycin H. In this study, we successfully demonstrate a concept that significantly increased our ability to quickly and efficiently identify microbes capable of the silent antibiotic production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
László Mózsik ◽  
Mirthe Hoekzema ◽  
Niels A. W. de Kok ◽  
Roel A. L. Bovenberg ◽  
Yvonne Nygård ◽  
...  

AbstractFilamentous fungi are historically known to be a rich reservoir of bioactive compounds that are applied in a myriad of fields ranging from crop protection to medicine. The surge of genomic data available shows that fungi remain an excellent source for new pharmaceuticals. However, most of the responsible biosynthetic gene clusters are transcriptionally silent under laboratory growth conditions. Therefore, generic strategies for activation of these clusters are required. Here, we present a genome-editing-free, transcriptional regulation tool for filamentous fungi, based on the CRISPR activation (CRISPRa) methodology. Herein, a nuclease-defective mutant of Cas9 (dCas9) was fused to a highly active tripartite activator VP64-p65-Rta (VPR) to allow for sgRNA directed targeted gene regulation. dCas9-VPR was introduced, together with an easy to use sgRNA “plug-and-play” module, into a non-integrative AMA1-vector, which is compatible with several filamentous fungal species. To demonstrate its potential, this vector was used to transcriptionally activate a fluorescent reporter gene under the control of the penDE core promoter in Penicillium rubens. Subsequently, we activated the transcriptionally silent, native P. rubens macrophorin biosynthetic gene cluster by targeting dCas9-VPR to the promoter region of the transcription factor macR. This resulted in the production of antimicrobial macrophorins. This CRISPRa technology can be used for the rapid and convenient activation of silent fungal biosynthetic gene clusters, and thereby aid in the identification of novel compounds such as antimicrobials.


Sign in / Sign up

Export Citation Format

Share Document