scholarly journals Counting sea lions and elephants from aerial photography using deep learning with density maps

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Chirag Padubidri ◽  
Andreas Kamilaris ◽  
Savvas Karatsiolis ◽  
Jacob Kamminga

Abstract Background The ability to automatically count animals is important to design appropriate environmental policies and to monitor their populations in relation to biodiversity and maintain balance among species. Out of all living mammals on Earth, 60% are livestock, 36% humans, and only 4% are animals that live in the wild. In a relatively short period, development of human civilization caused a loss of 83% of wildlife and 50% of plants. The rate of species extinction is accelerating. Traditional wildlife surveys provide rough population estimates. However, emerging technologies, such as aerial photography, allow to perform large-scale surveys in a short period of time with high accuracy. In this paper, we propose the use of computer vision, through deep learning (DL) architecture, together with aerial photography and density maps, to count the population of Steller sea lions and African elephants with high precision. Results We have trained two deep learning models, a basic UNet without any feature extractor (Model-1) and another with the EfficientNet-B5 feature extractor (Model-2). We measured the model’s prediction accuracy, using Root Mean Square Error (RMSE) for the predicted and actual animal count. The results showed an RMSE of 1.88 and 0.60 to count Steller sea lions and African elephants, respectively, regardless of complex background, different illumination conditions, heavy overlapping and occlusion of the animals. Conclusions Our proposed solution performed very well in the counting prediction problem, with relatively low training parameters and minimum annotation. The approach adopted, combining DL and density maps, provided better results than state-of-art deep learning models used for counting, indicating that the proposed method has the potential to be used more widely in large-scale wildlife surveying projects and initiatives.

2021 ◽  
Vol 11 (9) ◽  
pp. 3952
Author(s):  
Shimin Tang ◽  
Zhiqiang Chen

With the ubiquitous use of mobile imaging devices, the collection of perishable disaster-scene data has become unprecedentedly easy. However, computing methods are unable to understand these images with significant complexity and uncertainties. In this paper, the authors investigate the problem of disaster-scene understanding through a deep-learning approach. Two attributes of images are concerned, including hazard types and damage levels. Three deep-learning models are trained, and their performance is assessed. Specifically, the best model for hazard-type prediction has an overall accuracy (OA) of 90.1%, and the best damage-level classification model has an explainable OA of 62.6%, upon which both models adopt the Faster R-CNN architecture with a ResNet50 network as a feature extractor. It is concluded that hazard types are more identifiable than damage levels in disaster-scene images. Insights are revealed, including that damage-level recognition suffers more from inter- and intra-class variations, and the treatment of hazard-agnostic damage leveling further contributes to the underlying uncertainties.


Author(s):  
Wenjia Cai ◽  
Jie Xu ◽  
Ke Wang ◽  
Xiaohong Liu ◽  
Wenqin Xu ◽  
...  

Abstract Anterior segment eye diseases account for a significant proportion of presentations to eye clinics worldwide, including diseases associated with corneal pathologies, anterior chamber abnormalities (e.g. blood or inflammation) and lens diseases. The construction of an automatic tool for the segmentation of anterior segment eye lesions will greatly improve the efficiency of clinical care. With research on artificial intelligence progressing in recent years, deep learning models have shown their superiority in image classification and segmentation. The training and evaluation of deep learning models should be based on a large amount of data annotated with expertise, however, such data are relatively scarce in the domain of medicine. Herein, the authors developed a new medical image annotation system, called EyeHealer. It is a large-scale anterior eye segment dataset with both eye structures and lesions annotated at the pixel level. Comprehensive experiments were conducted to verify its performance in disease classification and eye lesion segmentation. The results showed that semantic segmentation models outperformed medical segmentation models. This paper describes the establishment of the system for automated classification and segmentation tasks. The dataset will be made publicly available to encourage future research in this area.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2020 ◽  
Vol 34 (7) ◽  
pp. 717-730 ◽  
Author(s):  
Matthew C. Robinson ◽  
Robert C. Glen ◽  
Alpha A. Lee

Abstract Machine learning methods may have the potential to significantly accelerate drug discovery. However, the increasing rate of new methodological approaches being published in the literature raises the fundamental question of how models should be benchmarked and validated. We reanalyze the data generated by a recently published large-scale comparison of machine learning models for bioactivity prediction and arrive at a somewhat different conclusion. We show that the performance of support vector machines is competitive with that of deep learning methods. Additionally, using a series of numerical experiments, we question the relevance of area under the receiver operating characteristic curve as a metric in virtual screening. We further suggest that area under the precision–recall curve should be used in conjunction with the receiver operating characteristic curve. Our numerical experiments also highlight challenges in estimating the uncertainty in model performance via scaffold-split nested cross validation.


2020 ◽  
Vol 10 (10) ◽  
pp. 2459-2465
Author(s):  
Iftikhar Ahmad ◽  
Muhammad Javed Iqbal ◽  
Mohammad Basheri

The size of data gathered from various ongoing biological and clinically studies is increasing at an exponential rate. The bio-inspired data mainly comprises of genes of DNA, protein and variety of proteomics and genetic diseases. Additionally, DNA microarray data is also available for early diagnosis and prediction of various types of cancer diseases. Interestingly, this data may store very vital information about genes, their structure and important biological function. The huge volume and constant increase in the extracted bio data has opened several challenges. Many bioinformatics and machine learning models have been developed but those fail to address key challenges presents in the efficient and accurate analysis of variety of complex biologically inspired data such as genetic diseases etc. The reliable and robust process of classifying the extracted data into different classes based on the information hidden in the sample data is also a very interesting and open problem. This research work mainly focuses to overcome major challenges in the accurate protein classification keeping in view of the success of deep learning models in natural language processing since it assumes the proteins sequences as a language. The learning ability and overall classification performance of the proposed system can be validated with deep learning classification models. The proposed system can have the superior ability to accurately classify the mentioned datasets than previous approaches and shows better results. The in-depth analysis of multifaceted biological data may also help in the early diagnosis of diseases that causes due to mutation of genes and to overcome arising challenges in the development of large-scale healthcare systems.


Author(s):  
Kosuke Takagi

Abstract Despite the recent success of deep learning models in solving various problems, their ability is still limited compared with human intelligence, which has the flexibility to adapt to a changing environment. To obtain a model which achieves adaptability to a wide range of problems and tasks is a challenging problem. To achieve this, an issue that must be addressed is identification of the similarities and differences between the human brain and deep neural networks. In this article, inspired by the human flexibility which might suggest the existence of a common mechanism allowing solution of different kinds of tasks, we consider a general learning process in neural networks, on which no specific conditions and constraints are imposed. Subsequently, we theoretically show that, according to the learning progress, the network structure converges to the state, which is characterized by a unique distribution model with respect to network quantities such as the connection weight and node strength. Noting that the empirical data indicate that this state emerges in the large scale network in the human brain, we show that the same state can be reproduced in a simple example of deep learning models. Although further research is needed, our findings provide an insight into the common inherent mechanism underlying the human brain and deep learning. Thus, our findings provide suggestions for designing efficient learning algorithms for solving a wide variety of tasks in the future.


Sign in / Sign up

Export Citation Format

Share Document