scholarly journals Macrophages and microglia: the cerberus of glioblastoma

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alice Buonfiglioli ◽  
Dolores Hambardzumyan

AbstractGlioblastoma (GBM) is the most aggressive and deadliest of the primary brain tumors, characterized by malignant growth, invasion into the brain parenchyma, and resistance to therapy. GBM is a heterogeneous disease characterized by high degrees of both inter- and intra-tumor heterogeneity. Another layer of complexity arises from the unique brain microenvironment in which GBM develops and grows. The GBM microenvironment consists of neoplastic and non-neoplastic cells. The most abundant non-neoplastic cells are those of the innate immune system, called tumor-associated macrophages (TAMs). TAMs constitute up to 40% of the tumor mass and consist of both brain-resident microglia and bone marrow-derived myeloid cells from the periphery. Although genetically stable, TAMs can change their expression profiles based upon the signals that they receive from tumor cells; therefore, heterogeneity in GBM creates heterogeneity in TAMs. By interacting with tumor cells and with the other non-neoplastic cells in the tumor microenvironment, TAMs promote tumor progression. Here, we review the origin, heterogeneity, and functional roles of TAMs. In addition, we discuss the prospects of therapeutically targeting TAMs alone or in combination with standard or newly-emerging GBM targeting therapies.

2021 ◽  
pp. 1118-1123
Author(s):  
Kengo Setta ◽  
Takaaki Beppu ◽  
Yuichi Sato ◽  
Hiroaki Saura ◽  
Junichi Nomura ◽  
...  

Malignant lymphoma of the head rarely arises outside of the brain parenchyma as primary cranial vault lymphoma (PCVL). A case of PCVL that invaded from subcutaneous tissue into the brain, passing through the skull, and occurred after mild head trauma is reported along with a review of the literature. The patient was a 75-year-old man with decreased activity. One month before his visit to our hospital, he bruised the left frontal area of his head. Magnetic resonance imaging showed homogeneously enhanced tumors with contrast media in the subcutaneous tissue corresponding to the head impact area and the cerebral parenchyma, but no obvious abnormal findings in the skull. A biopsy with craniotomy was performed under general anesthesia. The pathological diagnosis was diffuse large B-cell lymphoma. On histological examination, tumor cells grew aggressively under the skin. Tumor cells invaded along the emissary vein into the external table without remarkable bone destruction and extended across the skull through the Haversian canals in the diploe. Tumor cells were found only at the perivascular areas in the dura mater and extended into the brain parenchyma. Considering the history of head trauma and the neuroimaging and histological findings, the PCVL in the present case arose primarily under the skin, passed though the skull and dura mater, and invaded along vessels and reached the brain.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Eriko Tanaka ◽  
Ichiro Hada ◽  
Naoaki Mikami ◽  
Kunimasa Yan

Abstract Background and Aims Pathogenesis of idiopathic nephrotic syndrome (INS) is yet to be fully elucidated. Immunological disorders are reported to be involved in the etiology of INS. Due to the efficacy of immunosuppressant agents such as calcineurin inhibitor and rituximab in treating nephrotic syndrome, aberrant activation of the acquired immune system through T and B cells are considered to be the underlying pathogenic mechanisms of INS. Nevertheless, there is a possibility that the innate immune system plays a key role in INS pathogenesis. This study aims to investigate the involvement of innate immunity in INS pathogenesis by examining the expressions of toll-like receptors (TLRs). Method Kidney tissue samples from two INS patients were collected at two points of time: the first biopsy was performed during nephrosis and the second during remission. Total RNA was extracted from the kidney tissue samples, and RNA-sequencing was performed to investigate RNA expression profiles. The differences between RNA expression profiles of TLRs and molecules related to TLR pathways in the tissue samples collected during nephrosis and remission were analyzed. Results There was a significant decrease in RNA expression of TLR9 and TLR10 during remission compared to nephrosis: fold change in each patient was -2.12 and -2.12 for TLR9, and -2.51 and -2.09 for TLR10. RNA expression of TLR8 also decreased: fold change in each patient was -1.19 and -1.75. There were no significant changes in the RNA expression profiles of TLR1, 2, 3, 4, 5, 6, and 7. In addition, there were no differences in the RNA expression profiles of MYD88, IRAK family, and TRAF family molecules that are associated with TLR pathways. However, RNA expressions of IL6, IL1B, IL12B, and TNF, as well as the cytokines controlled by TLR8 and TLR9 pathways, which were activated during nephrosis, disappeared or decreased during remission. Conclusion The involvement of the innate immune system in the pathogenesis of nephrotic syndrome has been suggested in some reports. Based on the fact that the onset or recurrence of nephrosis is triggered by non-specific viral infection, it is highly possible that innate immunity is involved in the pathogenesis of nephrotic syndrome. TLRs play a key role in innate immunity as they elicit the innate immune system after detecting pathogens, induce inflammatory cytokine production, and trigger signaling pathways that activate lymphocytes via maturation of dendritic cells. Specifically, TLR8, 9, and 10 mediate pathways of the first immune response to viral infections. Our study reveals that TLRs play a pivotal role in innate immunity associated with renal tissue during the onset of nephrosis.


2008 ◽  
Vol 68 (11) ◽  
pp. 4026-4030 ◽  
Author(s):  
Lionel Apetoh ◽  
Antoine Tesniere ◽  
François Ghiringhelli ◽  
Guido Kroemer ◽  
Laurence Zitvogel

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2485
Author(s):  
Stephanie Sanders ◽  
Denise M. Herpai ◽  
Analiz Rodriguez ◽  
Yue Huang ◽  
Jeff Chou ◽  
...  

Glioblastoma (GBM) is the most aggressive malignant glioma. Therapeutic targeting of GBM is made more difficult due to its heterogeneity, resistance to treatment, and diffuse infiltration into the brain parenchyma. Better understanding of the tumor microenvironment should aid in finding more effective management of GBM. GBM-associated macrophages (GAM) comprise up to 30% of the GBM microenvironment. Therefore, exploration of GAM activity/function and their specific markers are important for developing new therapeutic agents. In this study, we identified and evaluated the expression of ALDH1A2 in the GBM microenvironment, and especially in M2 GAM, though it is also expressed in reactive astrocytes and multinucleated tumor cells. We demonstrated that M2 GAM highly express ALDH1A2 when compared to other ALDH1 family proteins. Additionally, GBM samples showed higher expression of ALDH1A2 when compared to low-grade gliomas (LGG), and this expression was increased upon tumor recurrence both at the gene and protein levels. We demonstrated that the enzymatic product of ALDH1A2, retinoic acid (RA), modulated the expression and activity of MMP-2 and MMP-9 in macrophages, but not in GBM tumor cells. Thus, the expression of ALDH1A2 may promote the progressive phenotype of GBM.


2020 ◽  
Vol 21 (5) ◽  
pp. 1652 ◽  
Author(s):  
Robert P. Friedland ◽  
Joseph D. McMillan ◽  
Zimple Kurlawala

Despite the enormous literature documenting the importance of amyloid beta (Ab) protein in Alzheimer's disease, we do not know how Ab aggregation is initiated and why it has its unique distribution in the brain. In vivo and in vitro evidence has been developed to suggest that functional microbial amyloid proteins produced in the gut may cross-seed Ab aggregation and prime the innate immune system to have an enhanced and pathogenic response to neuronal amyloids. In this commentary, we summarize the molecular mechanisms by which the microbiota may initiate and sustain the pathogenic processes of neurodegeneration in aging.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 210-210 ◽  
Author(s):  
Chen Xilin ◽  
Jianfeng Han ◽  
Chu Jianhong ◽  
Walter Meisen ◽  
Zhang Jianying ◽  
...  

Abstract Natural killer (NK) cells are innate lymphocytes that can rapidly eradicate tumor cells, especially those lacking MHC Class I molecules. NK cells can also rapidly eradicate herpes virus-infected cells. We designed an oncolytic herpes virus (oHSV) to selectively infect, replicate within, and lyse glioblastoma (GBM), a devastating brain tumor with a median survival of only 15 months following diagnosis. We have shown that the rapid influx of NK cells limits oHSV efficacy in GBM as they impede oHSV replication and spread [Alvarez-Breckenridge et al., Nat Med, 2012, 18(12):1827-34]. In the current study, we developed NK cell-based novel GBM therapies by decreasing the brain influx of NK cells to enhance the efficacy of oHSV, while arming NK cells in the brain with a chimeric antigen receptor (CAR) that targets both the wild-type EGFR and its mutant form EGFRvIII, two GBM tumor-associated antigens. We then investigated the synergistic effects between EGFR-CAR NK cells and oHSV. Transforming growth factor (TGF)-β is a potent immunosuppressive cytokine of NK cells [Yu et al, Immunity, 2006, 24(5):575-90]. We first determined if oHSV efficacy for treatment of GBM would be augmented by inhibiting anti-oHSV activity of NK cells with TGF-β pre-treatment. In vitro, NK cells pre-treated with TGF-β displayed less cytolytic capacity against oHSV-infected GBM cell lines and patient-derived GBM stem-like cells. In viral replication assays, co-culturing oHSV-infected GBM cells with NK cells pre-treated with TGF-β significantly increased virus titers. In an immunocompetent syngeneic GBM mouse model,administration of TGF-β to GBM-bearing mice prior to oHSV injection significantly inhibited intracranial infiltration and activation of NK cells (P < 0.05). In orthotopic human GBM xenograft mouse models and in syngeneic GBM mouse models, TGF-β treatment in vivo prior to oHSV therapy resulted in inhibition of NK cell infiltration, suppression of tumor growth and significantly prolonged survival of GBM-bearing mice (P < 0.05). Furthermore, depletion of NK cells incompletely blocked the positive effects of in vivo treatment of GBM with TGF-β on survival, suggesting that TGF-β may also directly act on other innate immune cells such as macrophages/microglia. These data demonstrate a single dose of TGF-β prior to oHSV administration enhances anti-tumor efficacy for GBM at least in part through the transient inhibition of the innate immune responses to oHSV infection. We next investigated whether NK cell activity could be enhanced to more directly target brain tumors while sparing eradication of oHSV. We therefore infected both human NK-92 cells and primary human NK cells to express the second generation CAR targeting both EGFR and EGFRvIII that we designed. Further, we asked if the treatment with EGFR-CAR NK cells plus oHSV could create a therapeutic synergy for the treatment to brain tumors. In vitro, compared with mock-transduced CAR-NK-cells, EGFR-CAR NK cells exhibited significantly higher cytotoxicity and IFN-γ production when co-cultured with tumor cells, for both NK-92 and primary NK cells (P < 0.01). Further, significantly higher cytolytic activity against tumor cells was obtained when CAR NK cells were combined with oHSV-1 infection of tumor cells, compared to either of the monotherapies alone (P < 0.05). In mice, to avoid oHSV clearance by the EGFR-CAR NK cells following the inoculation of the mouse with tumor cells, we administered these two agents sequentially; administering EGFR-CAR NK cells directly into the tumor first as a single injection of 2 × 106 cells, followed by intracranial infection with 2 × 105 plaque-forming units oHSV five days later, presumably after EGFR-CAR NK survival has diminished. Compared to vehicle controls, intracranial administration of either EGFR-CAR NK cells or oHSV blunted tumor growth. However, the combination of EGFR-CAR NK cells followed by oHSV infection resulted in significantly more efficient killing of tumor cells (P < 0.05) and significantly longer survival for tumor-bearing mice when compared to either monotherapy alone. Collectively, our studies demonstrate that in animal tumor models, we can combine novel NK cell and oHSV therapies to significantly improve survival. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Carina Mallard

The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized.


Sign in / Sign up

Export Citation Format

Share Document