scholarly journals Comparing learners’ knowledge, behaviors, and attitudes between two instructional modes of computer programming in secondary education

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dan Sun ◽  
Fan Ouyang ◽  
Yan Li ◽  
Caifeng Zhu

Abstract Background Unplugged programming is proved to be an effective means to foster the learner-centered programming learning. In addition to the final tests, learners’ programming knowledge, skills, and capacities are primarily demonstrated throughout the programming process, particularly in the situation when they encounter challenges and problems. However, few studies examine how learners engage in the programming processes and to what extent unplugged programming fosters learning. This research used a quasi-experimental design to investigate two instructional modes in China’s secondary education, namely, the instructor-directed lecturing and the learner-centered unplugged programming. Based on an analytical framework, this research used mixed methods to compare learners’ knowledge, behaviors, and attitudes under these two instructional modes. Results The research results revealed discrepancies between two instructional modes. First, learners in the unplugged programming class achieved significantly higher scores on the programming knowledge assessment, compared to learners in the traditional lecturing class. Second, compared to the traditional lecturing class, learners in the unplugged programming class had higher test scores of the computational thinking skills, particularly on the cooperativity dimension. Next, discrepancies of in-class behaviors showed that learners in the unplugged programming class had frequent behaviors of listening to the instructor’s instructions and discussing with peers, while learners in the instructor-directed class had frequent behaviors of listening to instructor, taking notes, and irrelevant activities. Learners’ self-reported attitudes in the unplugged programming indicated a higher level of confidence than learners in the traditional lecturing class. Overall, this research revealed that the learner-centered unplugged programming had potential to improve learners’ programming knowledge, behaviors, and attitudes compared to the traditional instructor-directed lecturing of programming. Conclusions As a feasible and easy-to-use instructional activity in computer science education, unplugged programming is encouraged to be integrated in formal education to increase learners’ programming interests, motivations, and qualities. This quasi-experimental research compared learners’ programming knowledge, behaviors, and attitudes under two instructional modes. The results revealed critical discrepancies between two instructional modes on learners’ knowledge gains, in-class behaviors, and changes of attitudes towards programming. Pedagogical and analytical implications were provided for future instructional design and learning analytics of computer programming education.

Author(s):  
Serhat Altiok ◽  
Erman Yükseltürk

In our age, computational thinking that involves understanding human behavior and designing systems for solving problems is important as much as reading, writing and arithmetic for everyone. Computer programming is one of the ways that could be promote the process of developing computational thinking, in addition to developing higher-order thinking skills such as problem solving, critical and creative thinking skills etc. However, instead of focusing on problems and sub-problems, algorithms, or the most effective and efficient solution, focusing on programming language specific needs and problems affects the computational thinking process negatively. Many educators use different tools and pedagogical approaches to overcome these difficulties such as, individual work, collaborative work and visual programming tools etc. In this study, researchers analyze four visual programming tools (Scratch, Small Basic, Alice, App Inventor) for students in K-12 level and three methodologies (Project-based learning, Problem-based learning and Design-based learning) while teaching programming in K-12 level. In summary, this chapter presents general description of visual programming tools and pedagogical approaches, examples of how each tool can be used in programming education in accordance with the CT process and the probable benefits of these tools and approaches to explore the practices of computational thinking.


2022 ◽  
pp. 648-676
Author(s):  
Serhat Altiok ◽  
Erman Yükseltürk

In our age, computational thinking that involves understanding human behavior and designing systems for solving problems is important as much as reading, writing and arithmetic for everyone. Computer programming is one of the ways that could be promote the process of developing computational thinking, in addition to developing higher-order thinking skills such as problem solving, critical and creative thinking skills etc. However, instead of focusing on problems and sub-problems, algorithms, or the most effective and efficient solution, focusing on programming language specific needs and problems affects the computational thinking process negatively. Many educators use different tools and pedagogical approaches to overcome these difficulties such as, individual work, collaborative work and visual programming tools etc. In this study, researchers analyze four visual programming tools (Scratch, Small Basic, Alice, App Inventor) for students in K-12 level and three methodologies (Project-based learning, Problem-based learning and Design-based learning) while teaching programming in K-12 level. In summary, this chapter presents general description of visual programming tools and pedagogical approaches, examples of how each tool can be used in programming education in accordance with the CT process and the probable benefits of these tools and approaches to explore the practices of computational thinking.


Comunicar ◽  
2019 ◽  
Vol 27 (59) ◽  
pp. 63-72 ◽  
Author(s):  
Ana García-Valcárcel-Muñoz-Repiso ◽  
Yen-Air Caballero-González

The development of programming skills is currently promoting from an early school age, trying to get children to take an active and creative role in the use of technologies. The objective of this article is to verify the repercussion of educational robotics activities on kindergarten students in the acquisition of computational thinking and programming skills. The research design is quasi-experimental, with pre-test and post-test measures, using experimental and control groups. The sample consists of 131 students from the second cycle of early education (between 3 and 6 years old), all from the same Spanish school. Computational thinking is measured through three dimensions: sequences (algorithms), action-instruction correspondence and debugging. The intervention sessions, as well as the structure of the challenges that were used in the pre- and post-test evaluations, were designed based on the reference program of robotics studies called “TangibleK”. The intervention, carried out doing learning activities using educational robotics resources, presents positive results in relation to the computational thinking skills achieved. The differences between the pre-test and the post-test in the experimental and control groups are statistically significant, in that children engaged in robotics program achieves a greater advance in the three dimensions of computational competence through this method. Actualmente se promueve el desarrollo de habilidades de programación desde una edad escolar temprana, tratando de que los niños adquieran un rol activo y creativo en el uso de las tecnologías. El objetivo de este trabajo es comprobar la repercusión del desarrollo de actividades de robótica educativa en la adquisición de habilidades de pensamiento computacional y programación en escolares de educación infantil. El diseño de la investigación es de tipo cuasi-experimental, con medidas pretest y postest, utilizando grupo experimental y control. La muestra la conforman 131 estudiantes del segundo ciclo de educación infantil (entre 3 y 6 años de edad) de un centro educativo español. El pensamiento computacional se mide a través de tres dimensiones: secuencias (algoritmos), correspondencia acción-instrucción y depuración. Las sesiones de intervención, así como la estructura de los retos que se utilizaron en las evaluaciones pre y postest fueron diseñadas tomando como base el programa de estudios en robótica denominado «TangibleK». La intervención, centrada en actividades de aprendizaje mediante recursos de robótica educativa, presenta resultados positivos en relación a las habilidades de pensamiento computacional logradas. Las diferencias encontradas entre el pre y postest en el grupo experimental son estadísticamente significativas y superiores a las presentadas en el grupo control, de modo que se concluye que los niños que realizan el programa de robótica consiguen un mayor avance en las tres dimensiones de la competencia computacional.


2019 ◽  
Vol 27 (02) ◽  
pp. 167
Author(s):  
Rubens Lacerda Queiroz ◽  
Fábio Ferrentini Sampaio ◽  
Mônica Pereira Dos Santos

This paper presents a case study about the development of Computational Thinking in primary school children (3st to 4th grade) via the teaching of programming abilities with the use of educational robotics, free technology and recyclable, low cost materials. We aimed at raising some hypotheses on whether there is a straight relationship between some cognitive aspects of children aged 8-10 (such as the ability to put events and ideas in sequence, the ability to execute mental operations on the basis of concrete experience, among others) and the ability to execute activities that may be linked to the learning of computer programming. The observed results indicated (from the use of a didactic kit developed for the accomplishment of this study) the possibility to develop the following computational thinking skills: abstract thinking ability, understanding of flows of control, Debugging and systematic error detection, iterative thinking, use of conditional logic and problem decomposition.  Regarding the investigations related to cognitive maturity, we found evidence of a correlation between the cognitive characteristics analyzed and the performance of certain tasks related to computer programming, such as the development of purely sequential programs and understanding of processing idea.


Author(s):  
Nor Hasbiah Ubaidullah ◽  
◽  
Zulkifley Mohamed ◽  
Jamilah Hamid ◽  
Suliana Sulaiman

Computational thinking skill is one of the essential abilities to be learned and perfected by students of this century. Studies have shown that in the teaching and learning of programming courses, discussion and problem-solving techniques have been widely used. However, studies based on the suitability of such teaching techniques for the development of the computational thinking skills of students are, however, lacking. In this context, this research was conducted to define the teaching techniques used by university lecturers when teaching a computer programming subject and to explore how the techniques can influence the development of the computational thinking skills of students. This research was based on a combination of qualitative and quantitative approaches involving a semi-structured interview and a survey method, respectively. The research sample consisted of eight (8) university lecturers recruited from several Malaysian public universities, who had been teaching computer science to undergraduates. The results showed that in teaching computer programming, a majority of the respondents used discussion and problem-solving methods, with each assisting students to gain computer programming skills and learn certain components of computational thinking. As such, it is recommended that teaching practitioners incorporate the discussion and problem-solving techniques in the teaching and learning of programming courses. The incorporation of such strategies will help students develop good computer programming and computational thinking skills encompassing all the fundamental elements. The results also revealed that the respondents had no experience in using the metacognitive technique. As such, it is also proposed that future research should focus on this technique to investigate any possible effects that it may have on the growth of the computer programming and computational thinking skills of undergraduates.


Author(s):  
Cornelia Connolly ◽  
Raquel Hijón Neira ◽  
Miguel Garcia-Iruela

Effective and reliable assessment approaches to computational thinking in secondary education are in demand. This paper uses a guided technological pedagogical content knowledge (TPACK) framework, incorporating a visual execution environment (VEE) and Scratch project for secondary school students as a method to teach and assess computational thinking. The objective is to investigate if computational thinking and programming concepts can be improved upon following this method, and if the K-12 children are able to improve their computational thinking skills. The research study was conducted over 2 years in a school setting using the guided VEE and project developed following the dimensions of Computational Thinking process. The project participants came from two cohorts, an after-school programming camp and an in-school environment. Data was collected over two academic years and a quasi-experimental procedure with pre- and post-test was followed. The results demonstrate knowledge gain on computational and programming concepts and encourages us to convey how students translate (as opposed to transfer) their computational thinking experiences into reality. The results indicate the students achieved significant improvement in their computational thinking development.


Author(s):  
PINAR MIHCI Türker ◽  
Ferhat Kadir Pala

In this study, the effect of algorithm education on teacher candidates’ computational thinking skills and computer programming self-efficacy perceptions were examined. In the study, one group pretest posttest experimental design was employed. The participants consisted of 24 (14 males and 10 females) teacher candidates, majoring in Computer Education and Instructional Technology (CEIT). In order to determine the teacher candidates’ computer programming self-efficacy perceptions, the Computer Programming Self-Efficacy Scale was used, whereas Computational Thinking Skills Scale was used to determine their computational thinking skills. The Wilcoxon Signed-Rank Test was used to analyze the differences between pretest and posttest scores of students' computer programming self-efficacy perceptions and computational thinking skills. Throughout the practices, 10 different algorithmic problems were presented to the students each week, and they were asked to solve these problems using flow chart. For 13 weeks, 130 different algorithmic problems were solved. Algorithm education positively and significantly increased students' simple programming tasks, complex programming tasks and programming self-efficacy perceptions. On the other hand, algorithm education had a positive and significant effect only on students’ algorithmic thinking sub-dimension but did not have any effect on other sub-dimensions and computational thinking skills in general.  


Sign in / Sign up

Export Citation Format

Share Document