scholarly journals Analysis of river bed variation using SSARR and RMA-2 models

Smart Water ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ju Ha Hwang ◽  
Seung Jin Maeng ◽  
Hyung San Kim ◽  
Seung Wook Lee

AbstractFuture changes in river bed were predicted under the assumption that flow velocity of past and changes in flow rate at upstream river due to construction of large-scale artificial structures downstream occur in the future. Therefore, the long-term runoff volume from the downstream part of Hosan Stream was estimated using the SSARR (Stream Synthesis and Reservoir Regulation Model). Changes in the river bed were simulated using RMA-2 and SED-2D, which are hydraulic models. As a result, it was found that the river bed variation is significantly affected by the inclusion of sediment in flood flow at upstream. A comprehensive evaluation of above results revealed that the river width has significantly affected flow rate, and the inclusion of sediment in flood flow from the upstream has a huge effect on changes in the riverbed. In this regard, there is a need to devise measures to mitigate future flood damage to artificial structures by reflecting sedimentation trends downstream before the construction of large-scale artificial structures at downstream of river.

2021 ◽  
Author(s):  
Brett Bouldin ◽  
Ahmed AlShmakhy ◽  
Ahmed Khaled Bazuhair ◽  
Muzoon Hasan Alzaabi ◽  
Jarl André Fellinghaug

Abstract Downhole wireless communication in the form of mud pulse telemetry enabled directional drilling over the past 60 years and has been hugely successful. Technologies like Measurement While Drilling (MWD), Logging While Drilling (LWD), and Geosteering would simply not exist without it. But in the Production and Producing end of the business, applications for downhole wireless communication have been less clear, especially where long distances and long-term monitoring are concerned. Several wireless technologies are in use today for long-term production applications. Electromagnetic (EM), acoustic, and pressure pulse telemetries are finding application as wireless production gauges, drill stem test tools, and drilling alternatives to pressure pulse. But the large-scale vision of, "Breaking the Wire!" in production wells has not yet occurred. Permanent Downhole Gauges (PDG) with an umbilical to surface are still the product of choice for long-term production monitoring. A history of wireless approaches in production applications will be given and the different methods used in the industry will be explained. A comparison and contrast of wireless telemetry methods will be explored, explained, and evaluated. Advantages and disadvantages will be listed for each approach. A ranking system will be employed to illustrate the evaluation results of the different wireless telemetry methods. New variants for wireless telemetry, power supplies, and measurement methods will be proposed. Preferred applications for each gauge type will be given. Downhole gauges can be improved by integrating pressure pulse, a downhole power generator, and downhole flow rate measurement into a single unit. The overall size can be ten times shorter than existing systems while still generating a larger wireless signal. Such a system would make wireless downhole gauges much more practical and should significantly increase their uptake in the industry. Real-time measurement of downhole pressure and downhole flow rate transforms the accuracy and effectiveness of Pressure Transient Analysis (PTA). Better reservoir understanding can be gained by using only drawdown tests, without shutting in the well. Smaller tools are generally more cost effective.


2018 ◽  
Vol 12 (5) ◽  
pp. 1279-1291
Author(s):  
Santeri Pöyhönen ◽  
Tero Ahonen ◽  
Jero Ahola ◽  
Pekka Punnonen ◽  
Simo Hammo ◽  
...  

1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


1967 ◽  
Vol 06 (01) ◽  
pp. 8-14 ◽  
Author(s):  
M. F. Collen

The utilization of an automated multitest laboratory as a data acquisition center and of a computer for trie data processing and analysis permits large scale preventive medical research previously not feasible. Normal test values are easily generated for the particular population studied. Long-term epidemiological research on large numbers of persons becomes practical. It is our belief that the advent of automation and computers has introduced a new era of preventive medicine.


2018 ◽  
pp. 172-182 ◽  
Author(s):  
Shengmin CAO

This paper mainly studies the application of intelligent lighting control system in different sports events in large sports competition venues. We take the Xiantao Stadium, a large­scale sports competition venue in Zaozhuang City, Shandong Province as an example, to study its intelligent lighting control system. In this paper, the PID (proportion – integral – derivative) incremental control model and the Karatsuba multiplication model are used, and the intelligent lighting control system is designed and implemented by multi­level fuzzy comprehensive evaluation model. Finally, the paper evaluates the actual effect of the intelligent lighting control system. The research shows that the intelligent lighting control system designed in this paper can accurately control the lighting of different sports in large stadiums. The research in this paper has important practical significance for the planning and design of large­scale sports competition venues.


2014 ◽  
pp. 124-129
Author(s):  
Z. V. Karamysheva

The review contains detailed description of the «Atlas of especially protected natural areas of Saint Petersburg» published in 2013. This publication presents the results of long-term studies of 12 natural protected areas made by a large research team in the years from 2002 to 2013 (see References). The Atlas contains a large number of the historical maps, new satellite images, the original illustrations, detailed texts on the nature of protected areas, summary tables of rare species of vascular plants, fungi and vertebrates recorded in these areas. Special attention is paid to the principles of thematic large-scale mapping. The landscape maps, the vegetation maps as well as the maps of natural processes in landscapes are included. Reviewed Atlas deserves the highest praise.


2000 ◽  
Vol 151 (3) ◽  
pp. 80-83
Author(s):  
Pascal Schneider ◽  
Jean-Pierre Sorg

In and around the state-owned forest of Farako in the region of Sikasso, Mali, a large-scale study focused on finding a compromise allowing the existential and legitimate needs of the population to be met and at the same time conserving the forest resources in the long term. The first step in research was to sketch out the rural socio-economic context and determine the needs for natural resources for autoconsumption and commercial use as well as the demand for non-material forest services. Simultaneously, the environmental context of the forest and the resources available were evaluated by means of inventories with regard to quality and quantity. According to an in-depth comparison between demand and potential, there is a differentiated view of the suitability of the forest to meet the needs of the people living nearby. Propositions for a multipurpose management of the forest were drawn up. This contribution deals with some basic elements of research methodology as well as with results of the study.


2002 ◽  
Vol 2 (2) ◽  
pp. 91-98
Author(s):  
R. Winzenbacher ◽  
R. Schick ◽  
H.-H. Stabel ◽  
M. Jekel

Improved removal of particles during the treatment of natural aquatic suspensions has been achieved by pre-ozonation and the addition of small quantities of iron salts (βFe ≤ 0.1 mg.L-1; “Fe(III)-assisted filtration”) followed by rapid filtration. As shown by investigations on a large-scale installation at Lake Constance Water Supply, this procedure reliably reduces suspended solids by at least 2-3 powers of ten in long-term use. However, the high efficacy of Fe(III)-assisted filtration cannot be explained on the basis of known coagulation mechanisms (like adsorption-charge neutralization, co-precipitation). Instead, the essential step was found to be the conditioning of the filter medium by coating it with colloids containing Fe(OH)3, and this “Fe coating” process occurs only in the presence of alkaline earths (especially Ca2+). According to further experiments, the enhanced solid-liquid separation was ultimately traced to chemical interactions such as the formation of calcium-organic association structures between the iron hydroxides and other solids. For design of Fe(III)-assisted filtration steps, finally, a βCa/DOC ratio above 40 mg.mg-1 and pre-oxidation with ozone dosages not exceeding 2 mg O3/mg DOC was recommended.


Sign in / Sign up

Export Citation Format

Share Document