scholarly journals Transcriptome comparisons detect new genes associated with apoptosis of cattle and buffaloes preantral follicles

Author(s):  
Khairy Mohamed Zoheir ◽  
Ahmed Mohamed Darwish ◽  
Yang Liguo ◽  
Abdelkader E. Ashour

Abstract Background To develop new breeding technology to improve the breeding ability of bovine, it is the development trend to find the main reason for the occurrence of atresia in these organisms. Transcriptomes of small (100–120 μm) and large (200–220 μm) preantral follicles from cattle and buffalo ovaries were evaluated in vivo and in vitro to understand the transcriptional modulation in preantral follicles that leads to the phenomenon of atresia. Methods The preantral follicles were checked as dead, damage, or live follicles in vivo and in vitro by using trypan blue then bisbenzimide and propidium iodine. Transcriptomes of small (100–120 μm) and large (200–220 μm) preantral follicles of cattle and buffalo were evaluated in vivo and in vitro by microarray and RT-PCR. Healthy preantral follicles were selected based on staining results, and then RNA was extracted from them. Results The viability percentage of preantral follicles in cattle was higher (26.7% and 20%) than buffalo (10%) in vivo and in vitro, respectively. According to the microarray data analysis for cattle preantral follicles, only eleven genes were detected corresponding to five upregulated and six downregulated in large size (200–220 μm) compared to small (100–120 μm) size preantral follicles, while in buffalo, 171 genes were detected (92 upregulated and 79 downregulated) in large size compared to small preantral follicle size. The results of RT-PCR of the selected genes (FASTKD1, BAG2, RHOB, AGTR2, MEF2C, BCL10, G2E3, TM2D1, IGF-I, IGFBP3, PRDX3, and TRIAP1) validated the microarray results. In conclusion, the data of gene expression showed significant differences between small and large sizes in both buffalo and cattle preantral follicles. Conclusion Apoptotic genes were upregulated in the large preantral follicle compared with the small preantral follicles. Moreover, the expression level of these apoptotic genes was significantly upregulated in buffalo than in the cattle. Most of these genes were significantly upregulated in the large buffalo preantral follicle compared with the small size. However, anti-apoptotic genes were upregulated in large cattle preantral follicle and downregulated in large buffalo preantral follicle.

2012 ◽  
Vol 26 (12) ◽  
pp. 2004-2015 ◽  
Author(s):  
Kai Xue ◽  
Jia-yin Liu ◽  
Bruce D. Murphy ◽  
Benjamin K. Tsang

Abstract Nuclear receptor subfamily 4 group A member1 (NR4A1), an orphan nuclear receptor, is involved in the transcriptional regulation of thecal cell androgen biosynthesis and paracrine factor insulin-like 3 (INSL3) expression. Androgens are known to play an important regulatory role in ovarian follicle growth. Using a chronically androgenized rat model, a preantral follicle culture model and virus-mediated gene delivery, we examined the role and regulation of NR4A1 in the androgenic control of preantral follicular growth. In the present study, Ki67 staining was increased in preantral follicles on ovarian sections from 5α-dihydrotestosterone (DHT)-treated rats. Preantral follicles from DHT-treated rats cultured for 4 d exhibited increased growth and up-regulation of mRNA abundance of G1/S-specific cyclin-D2 (Ccnd2) and FSH receptor (Fshr). Similarly, DHT (1 μm) increased preantral follicular growth and Ccnd2 and Fshr mRNA abundance in vitro. The NR4A1 expression was high in theca cells and was down-regulated by DHT in vivo and in vitro. Forced expression of NR4A1 augmented preantral follicular growth, androstenedione production, and Insl3 expression in vitro. Inhibiting the action of androgen (with androgen receptor antagonist flutamide) or INSL3 (with INSL3 receptor antagonist INSL3 B-chain) reduced NR4A1-induced preantral follicular growth. Furthermore, NR4A1 overexpression enhanced DHT-induced preantral follicular growth, a response attenuated by inhibiting INSL3. In conclusion, DHT promotes preantral follicular growth and attenuates thecal NR4A1 expression in vivo and in vitro. Our findings are consistent with the notion that NR4A1 serves as an important point of negative feedback to minimize the excessive preantral follicle growth in hyperandrogenism.


Zygote ◽  
2002 ◽  
Vol 10 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Odile G. Martins ◽  
Arlette Pesty ◽  
António Gouveia-Oliveira ◽  
António J. Cidadão ◽  
Carlos E. Plancha ◽  
...  

Calcium signalling is involved in important events in oocytes, such as meiotic competence acquisition. We have previously demonstrated the positive influence of animal age and gonadotropin stimulation in vivo regarding the ability of oocytes recovered from preantral follicles to exhibit calcium spikes. In the present work we determined whether preantral follicle development in vitro also allows oocytes to acquire calcium signalling activity. We also aimed to verify the influence of animal age, FSH + LH and/or insulin on oocyte calcium spike acquisition during preantral follicle culture. Early preantral follicles were isolated from 12-day-old and 1- to 3-month-old F1 hybrid mice and cultured individually for either 2 or 6 days. At the end of the culture period the oocytes were processed for calcium imaging by confocal microscopy. We show that oocytes recovered from cultured preantral follicles exhibit variable calcium spike activity rates, depending on animal age, culture duration and hormonal supplementation. Oocytes recovered from adult animals continue to exhibit calcium spikes, and those recovered from juveniles acquire that activity after culture. Insulin and gonadotropins in combination account for an early and maintained inhibitory effect on calcium signalling acquisition by oocytes. Insulin alone also leads to an early inhibitory effect, which, however, disappears with longer culture periods. Contrary to the complex in vivo situation, the acquisition of calcium signalling by oocytes in a controlled in vitro environment does not seem to be dependent on gonadotropins alone.


Reproduction ◽  
2019 ◽  
Vol 157 (5) ◽  
pp. 445-455 ◽  
Author(s):  
Guangyin Xi ◽  
Wenjing Wang ◽  
Sarfaraz A Fazlani ◽  
Fusheng Yao ◽  
Mingyao Yang ◽  
...  

Compared to ovarian antral follicle development, the mechanism underlying preantral follicle growth has not been well documented. Although C-type natriuretic peptide (CNP) involvement in preantral folliculogenesis has been explored, its detailed role has not been fully defined. Here, we used mouse preantral follicles and granulosa cells (GCs) as a model for investigating the dynamic expression of CNP and natriuretic peptide receptor 2 (NPR2) during preantral folliculogenesis, the regulatory role of oocyte-derived growth factors (ODGFs) in natriuretic peptide type C (Nppc) and Npr2 expression, and the effect of CNP on preantral GC viability. Both mRNA and protein levels of Nppc and Npr2 were gradually activated during preantral folliculogenesis. CNP supplementation in culture medium significantly promoted the growth of in vitro-cultured preantral follicles and enhanced the viability of cultured GCs in a follicle-stimulating hormone (FSH)-independent manner. Using adult and prepubertal mice as an in vivo model, CNP pre-treatment via intraperitoneal injection before conventional superovulation also had a beneficial effect on promoting the ovulation rate. Furthermore, ODGFs enhanced Nppc and Npr2 expression in the in vitro-cultured preantral follicles and GCs. Mechanistic study demonstrated that the regulation of WNT signaling and estrogen synthesis may be implicated in the promoting role of CNP in preantral folliculogenesis. This study not only proves that CNP is a critical regulator of preantral follicle growth, but also provides new insight in understanding the crosstalk between oocytes and somatic cells during early folliculogenesis.


2009 ◽  
Vol 29 (01) ◽  
pp. 17-20 ◽  
Author(s):  
I. Marx ◽  
I. Badirou ◽  
R. Pendu ◽  
O. Christophe ◽  
C. V. Denis

SummaryVon Willebrand factor (VWF) structure-function relationship has been studied only through in vitro approaches. The VWF-deficient mouse model has been extremely useful to examine the in vivo function of VWF but does not allow a more subtle analysis of the relative importance of its different domains. However, considering the large size of VWF and its capacity to interact with various ligands in order to support platelet adhesion and aggregation, the necessity to evaluate independently these interactions appeared increasingly crucial. A recently developed technique, known as hydrodynamic injection, which allows transient expression of a transgene by mouse hepatocytes, proved very useful in this regard. Indeed, transient expression of various VWF mutants in VWF-deficient mice contributed to improve our knowledge about the role of VWF interaction with subendothelial collagens and with platelets receptors in VWF roles in haemostasis and thrombosis. These findings can provide new leads in the development of anti-thrombotic therapies.


1998 ◽  
Vol 26 (5) ◽  
pp. 629-634
Author(s):  
Emiliana Falcone ◽  
Edoardo Vignolo ◽  
Livia Di Trani ◽  
Simona Puzelli ◽  
Maria Tollis

A reverse transcriptase polymerase chain reaction (RT-PCR) assay specific for identifying avian infectious bronchitis virus (IBV) in poultry vaccines, and the serological response to IBV induced by the inoculation of chicks with a Newcastle disease vaccine spiked with the Massachusetts strain of IBV, were compared for their ability to detect IBV as a contaminant of avian vaccines. The sensitivity of the IBV-RT-PCR assay provided results which were at least equivalent to the biological effect produced by the inoculation of chicks, allowing this assay to be considered a valid alternative to animal testing in the quality control of avian immunologicals. This procedure can easily be adapted to detect a number of contaminants for which the in vivo test still represents the only available method of detection.


2018 ◽  
Vol 13 (6) ◽  
pp. 1934578X1801300
Author(s):  
Jasmina Čakar ◽  
Naida Kadrić Lojo ◽  
Anja Haverić ◽  
Maida Hadžić ◽  
Lejla Lasić ◽  
...  

Satureja subspicata and S. horvatii are endemic species of the Balkan Peninsula and often used in traditional medicine in Bosnia and Herzegovina to treat different health conditions. We aimed to analyze the unevaluated apoptotic, genotoxic and cytotoxic effects of two Satureja species, as well as their content of phenolics that are mainly responsible for the plant's biological activity. Apoptotic and geno/cytotoxic activities of S. subspicata and S. horvatii were investigated in vitro in human lymphocyte culture and in vivo in mice. The content of the main phenolics in plant extracts was determined by ultra-high pressure liquid chromatography-MS-MS (UHPLC–MS/MS). Genotoxic and cytotoxic activities of Satureja extracts were evaluated in vitro by applying a cytokinesis-block micronucleus cytome assay in human lymphocyte culture and in vivo applying a mice reticulocytes micronucleus assay. SALSA RT-MLPA R011-C1 apoptosis assay was used for measuring the relative expression of 44 genes associated with the regulation of the apoptotic pathways in human lymphocyte cultures treated with different concentrations of two Satureja extracts. The first analysis of phenolic compounds in S. horvatii and S. subspicata determined by an UHPLC-MS/MS method revealed high levels of rosmarinic and caffeic acids. Minor genotoxic potential was determined in relation to the tested concentrations while no cytostatic and cytotoxic effects were revealed in vitro. However, when applied in concentrations of 200 mg/kg per os, aqueous extracts of two Satureja species significantly decreased frequency of reticulocytes micronuclei in treated mice against controls. Extracts of S. subspicata and S. horvatii in concentrations of 0.2 mg/mL, regardless of solvent used, downregulated pro-apoptotic and upregulated anti-apoptotic genes, showing anti-apoptotic activity. Our results indicate that the registered anti-genotoxic and anti-apoptotic activity is most likely related to the high level of phenolic acids (particularly rosmarinic and caffeic) in the tested extracts.


Author(s):  
Birgit Rath-Deschner ◽  
Andressa V. B. Nogueira ◽  
Svenja Beisel-Memmert ◽  
Marjan Nokhbehsaim ◽  
Sigrun Eick ◽  
...  

Abstract Objectives The aim of this in vitro and in vivo study was to investigate the interaction of periodontitis and orthodontic tooth movement on interleukin (IL)-6 and C-X-C motif chemokine 2 (CXCL2). Materials and methods The effect of periodontitis and/or orthodontic tooth movement (OTM) on alveolar bone and gingival IL-6 and CXCL2 expressions was studied in rats by histology and RT-PCR, respectively. The animals were assigned to four groups (control, periodontitis, OTM, and combination of periodontitis and OTM). The IL-6 and CXCL2 levels were also studied in human gingival biopsies from periodontally healthy and periodontitis subjects by RT-PCR and immunohistochemistry. Additionally, the synthesis of IL-6 and CXCL2 in response to the periodontopathogen Fusobacterium nucleatum and/or mechanical strain was studied in periodontal fibroblasts by RT-PCR and ELISA. Results Periodontitis caused an increase in gingival levels of IL-6 and CXCL2 in the animal model. Moreover, orthodontic tooth movement further enhanced the bacteria-induced periodontal destruction and gingival IL-6 gene expression. Elevated IL-6 and CXCL2 gingival levels were also found in human periodontitis. Furthermore, mechanical strain increased the stimulatory effect of F. nucleatum on IL-6 protein in vitro. Conclusions Our study suggests that orthodontic tooth movement can enhance bacteria-induced periodontal inflammation and thus destruction and that IL-6 may play a pivotal role in this process. Clinical relevance Orthodontic tooth movement should only be performed after periodontal therapy. In case of periodontitis relapse, orthodontic therapy should be suspended until the periodontal inflammation has been successfully treated and thus the periodontal disease is controlled again.


2018 ◽  
Vol 51 (4) ◽  
pp. 1969-1981 ◽  
Author(s):  
Xiangyu Zhu ◽  
Si-ping Ma ◽  
Dongxiang Yang ◽  
Yanlong Liu ◽  
Yong-peng Wang ◽  
...  

Background/Aims: Deregulation of microRNAs (miRNAs) has been associated with a variety of cancers, including colorectal cancer (CRC). Here, we investigated anomalous miR-142-3p expression and its possible functional consequences in primary CRC samples. Methods: The expression of miR-142-3p was measured by quantitative RT-PCR in 116 primary CRC tissues and adjacent non-tumor tissues. The effect of miR-142-3p up- or down-regulation in CRC-derived cells was evaluated in vitro by cell viability and colony formation assays and in vivo by growth assays in xenografted nude mice. Results: Using quantitative RT-PCR, we found that miR-142-3p was down-regulated in 78.4 % (91/116) of the primary CRC tissues tested when compared to the adjacent non-tumor tissues. We also found that the miR-142-3p mimic reduced in vitro cell viability and colony formation by inducing cell cycle arrest in CRC-derived cells, and inhibited in vivo tumor cell growth in xenografted nude mice. Inversely, we found that the miR-142-3p inhibitor increased the viability and colony forming capacity of CRC-derived cells and tumor cell growth in xenografted nude mice. In addition, we identified CDK4 as a potential target of miR-142-3p by predictions and dual-luciferase reporter assays. Concordantly, we found that miR-142-3p mimics and inhibitors could decrease and increase CDK4 protein levels in CRC-derived cells, respectively. Conclusion: From our results we conclude that miR-142-3p may act as a tumor suppressor in CRC and may serve as a tool for miRNA-based CRC therapy.


2020 ◽  
Author(s):  
Kebin Zheng ◽  
Haipeng Xie ◽  
Xiaosong Wu ◽  
Xichao Wen ◽  
Zhaomu Zeng ◽  
...  

Abstract BackgroundIncreasing studies have revealed that circular RNAs (CircRNAs) make great contribution to regulating tumor progression. Therefore, we intended to explore the expression characteristics, function, and related mechanisms of a novel type of circRNA, PIP5K1A in glioma. MethodsFirstly, RT-PCR was carried out to examine CircPIP5K1A expression in glioma tissues and adjacent normal tissues, and the correlation between CircPIP5K1A level and the clinical pathological indicators of glioma was analyzed. Then, the CircPIP5K1A expression in various glioma cell lines was detected, and a cell model of CircPIP5K1A overexpression and knockdown was constructed. Subsequently, cell proliferation and viability were detected by CCK8 method and BrdU staining, apoptosis was detected by flow cytometry, and cell invasion was examined by Transwell assay. The expression of TCF12, PI3K/AKT pathway apoptotic related proteins (including Caspase3, Bax and Bcl2) and epithelial-mesenchymal transition (EMT) markers (including E-cadherin, Vimentin and N-cadherin) by western blot or RT-PCR. ResultsThe results manifested that CircPIP5K1A was obviously upregulated in glioma tissues (compared with that in normal adjacent tissues), and overexpressed CircPIP5K1A was distinctly related to glioma volume and histopathological grade. Functionally, overexpressing CircPIP5K1A notably elevated the proliferation, invasion, EMT of glioma cells, and inhibited apoptosis both in vivo and in vitro. Besides, CircPIP5K1A also upregulated TCF12 and PI3K/AKT pathway activation. Bioinformatics analysis testified that miR-515-5p was a common target of CircPIP5K1A and TCF12, while dual luciferase reporter assay and RNA immunocoprecipitation (RIP) experiment further confirmed that CircPIP5K1A targeted miR-515-5p, which bound the 3'-untranslated region (UTR) of TCF12. ConclusionsAltogether, the study illustrated that CircPIP5K1A is a potential prognostic marker in glioma and regulates the development of glioma through the modulating miR-515-5p mediated TCF12/PI3K/AKT axis.


2016 ◽  
Author(s):  
Ιωάννα Βαρελά

Η ανακάλυψη της μεθόδου του κυτταρικού επαναπρογραμματισμού ανθρώπινων δερματικών ινοβλαστών σε επαγόμενα πολυδύναμα βλαστοκύτταρα (induced pluripotent stem cells, iPSCs) το 2007 άνοιξε το δρόμο για τη μελέτη και την εξατομικευμένη θεραπεία πολλών χρόνιων νόσων. Επιδιώξαμε να δημιουργήσουμε iPS - κυτταρικές σειρές επαναπρογραμματίζοντας μεσεγχυματικά στρωματικά κύτταρα (mesenchymal stromal cells, MSCs) μυελού των οστών, μέσω μιας μεθόδου επαναπρογραμματισμού χωρίς ενσωμάτωση γονιδίων στο γενετικό υλικό των κυττάρων. Δερματικοί ινοβλάστες από φυσιολογικούς δότες και μεσεγχυματικά στρωματικά κύτταρα μυελού των οστών από φυσιολογικό δότη μεταμόσχευσης μυελού των οστών και από ασθενή με β-Μεσογειακή αναιμία (β-ΜΑ) διαμολύνθηκαν, μέσω λιποσωματικών φορέων, με συνθετικά mRNA που κωδικοποιούν τους μεταγραφικούς παράγοντες Oct4, Klf4, Sox2, Lin28, c-Myc. Στη συνέχεια, τα κύτταρα ελέγχθηκαν σε καλλιέργειες για τον σχηματισμό αποικιών πολυδύναμων βλαστοκυττάρων. Οι αποικίες απομονώθηκαν και με συνεχείς ανακαλλιέργειες δημιουργήθηκαν κυτταρικές σειρές, οι οποίες εξετάστηκαν για την πολυδυναμία τους με μεθόδους ανίχνευσης της έκφρασης των μεταγραφικών παραγόντων πολυδυναμίας (κυτταρομετρία ροής, RT-PCR, μελέτη του μεταγραφώματος με RNA μικροσυστοιχίες). Ως θετικός μάρτυρας και μέτρο σύγκρισης χρησιμοποιήθηκε πολύ καλά χαρακτηρισμένη εμβρυονική σειρά πολυδύναμων βλαστοκυττάρων. Οι iPS-κυτταρικές σειρές μελετήθηκαν, επίσης, ως προς τη λειτουργική τους πολυδυναμία με τον έλεγχο της ικανότητας τους να δημιουργούν in vitro εμβρυϊκά σωματίδια και in vivo τερατώματα μετά από υποδόρια εμφύτευση τους σε ανοσοανεπαρκείς ποντικούς, και ως προς τη δυνατότητα διαφοροποίησής τους σε αιμοποιητικά προγονικά κύτταρα. Η γενετική σταθερότητα των κυτταρικών σειρών ελέγχθηκε με DNA μικροσυστοιχίες συγκριτικού γονιδιωματικού υβριδισμού (aCGH). Απομονώθηκαν 3 iPS κυτταρικές σειρές από κάθε δείγμα κυττάρων, οι οποίες εμφανίζουν μεταγράφωμα πανομοιότυπο με εκείνο των πολυδύναμων εμβρυονικών βλαστοκυττάρων και. δημιουργούν εμβρυϊκά σωματίδια in vitro και τερατώματα in vivo, τα οποία αποτελούνται από ιστούς καταγωγής και από τα τρία βλαστικά δέρματα. Τα iPSCs των κυτταρικών σειρών πολλαπλασιάζονται για μεγάλο χρονικό διάστημα χωρίς μορφολογικές ενδείξες διαφοροποίησης. Με τη μέθοδο aCGH, στις iPS κυτταρικές σειρές μετά την 10η ανακαλλιέργεια ανιχνεύθηκαν πολυμορφισμοί στον αριθμό αντιγράφων (CNVs), τα οποία ήταν ελλείμματα μεγέθους περίπου 3 Mb. Η διαφοροποίηση των iPSCs σε αιμοποιητικά προγονικά κύτταρα οδήγησε στην παραγωγή CD34+ κυττάρων σε ποσοστό 8-10% των παραχθέντων κυττάρων με ασθενούς έντασης συνέκφραση του CD45, προσομοιάζοντας στο αιμαγγειακό στελεχιαίο κύτταρο. Στην παρούσα διατριβή παρουσιάζεται, για πρώτη φορά στην Ελλάδα, εξ όσων γνωρίζουμε, η τεχνολογία παραγωγής ανθρώπινων iPSCs με μια ασφαλή και αξιόπιστη μέθοδο. Οι iPSCs-κυτταρικές σειρές μπορεί να χρησιμοποιηθούν στη μελέτη ασθενειών, στον έλεγχο φαρμάκων και στην ανάπτυξη πρωτοκόλλων ιστικής μηχανικής και κυτταρικής θεραπείας.


Sign in / Sign up

Export Citation Format

Share Document