PROPOSED ATTENUATION‐DISPERSION PAIR FOR SEISMIC WAVES

Geophysics ◽  
1972 ◽  
Vol 37 (3) ◽  
pp. 456-461 ◽  
Author(s):  
J. E. White ◽  
D. J. Walsh

Several papers in recent years have dealt with the causality‐imposed relation between attenuation and dispersion for waves in lossy solids, with emphasis on seismic waves. While the published formulas for dispersion within a particular frequency band are supported by experimental evidence within that band, the mathematical behavior of these expressions outside the band, particularly at low frequencies, is physically unacceptable. In the present paper, one‐dimensional seismic waves are modeled as propagation along a simple lumped‐element transmission line, leading to expressions for attenuation and velocity as functions of frequency which not only satisfy the experimental data available, but exhibit no objectionable behavior outside the range of available data. This is achieved by introducing a resistive element whose value is inversely proportional to frequency. Numerical application of the Hilbert transform shows the condition of causality to be satisfied by this model quite accurately.

Geophysics ◽  
1979 ◽  
Vol 44 (11) ◽  
pp. 1806-1812 ◽  
Author(s):  
N. C. Dutta ◽  
A. J. Seriff

In two important papers, J. E. White and coauthors (White, 1975; White et al, 1976) have given an approximate theory for the calculation of attenuation and dispersion of compressional seismic waves in porous rocks filled mostly with brine but containing gas‐filled regions. Modifications of White’s formulas for [Formula: see text] and Q in the case of gas‐filled spheres brings the results into good agreement with the more exact calculations of Dutta and Odé (1979a, b, this issue), who used Biot’s theory for porous solids. In particular, the modified formulas give the expected Gassmann‐Wood velocity at very low frequencies. Inclusion of the finite gas compressibility in numerical calculations for gas‐filled spheres shows an interesting maximum of the attenuation at low gas saturations which is not seen if the gas is ignored. A comparison of the attenuation calculated for the same rock and fluids but for three different geometries of the gas‐filled regions suggests that the configuration of the gas‐filled zones does not have an important effect on the magnitude of the attenuation.


2020 ◽  
Vol 26 ◽  
pp. 7
Author(s):  
Hui Wei ◽  
Shuguan Ji

This paper is devoted to the study of periodic (in time) solutions to an one-dimensional semilinear wave equation with x-dependent coefficients under various homogeneous boundary conditions. Such a model arises from the forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with an approximation argument, we prove that there exist infinitely many periodic solutions whenever the period is a rational multiple of the length of the spatial interval. The proof is essentially based on the spectral properties of the wave operator with x-dependent coefficients.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 309-318 ◽  
Author(s):  
Jorge O. Parra

The transversely isotropic poroelastic wave equation can be formulated to include the Biot and the squirt‐flow mechanisms to yield a new analytical solution in terms of the elements of the squirt‐flow tensor. The new model gives estimates of the vertical and the horizontal permeabilities, as well as other measurable rock and fluid properties. In particular, the model estimates phase velocity and attenuation of waves traveling at different angles of incidence with respect to the principal axis of anisotropy. The attenuation and dispersion of the fast quasi P‐wave and the quasi SV‐wave are related to the vertical and the horizontal permeabilities. Modeling suggests that the attenuation of both the quasi P‐wave and quasi SV‐wave depend on the direction of permeability. For frequencies from 500 to 4500 Hz, the quasi P‐wave attenuation will be of maximum permeability. To test the theory, interwell seismic waveforms, well logs, and hydraulic conductivity measurements (recorded in the fluvial Gypsy sandstone reservoir, Oklahoma) provide the material and fluid property parameters. For example, the analysis of petrophysical data suggests that the vertical permeability (1 md) is affected by the presence of mudstone and siltstone bodies, which are barriers to vertical fluid movement, and the horizontal permeability (1640 md) is controlled by cross‐bedded and planar‐laminated sandstones. The theoretical dispersion curves based on measurable rock and fluid properties, and the phase velocity curve obtained from seismic signatures, give the ingredients to evaluate the model. Theoretical predictions show the influence of the permeability anisotropy on the dispersion of seismic waves. These dispersion values derived from interwell seismic signatures are consistent with the theoretical model and with the direction of propagation of the seismic waves that travel parallel to the maximum permeability. This analysis with the new analytical solution is the first step toward a quantitative evaluation of the preferential directions of fluid flow in reservoir formation containing hydrocarbons. The results of the present work may lead to the development of algorithms to extract the permeability anisotropy from attenuation and dispersion data (derived from sonic logs and crosswell seismics) to map the fluid flow distribution in a reservoir.


1978 ◽  
Vol 100 (1) ◽  
pp. 20-24 ◽  
Author(s):  
R. H. Rand

A one-dimensional, steady-state, constant temperature model of diffusion and absorption of CO2 in the intercellular air spaces of a leaf is presented. The model includes two geometrically distinct regions of the leaf interior, corresponding to palisade and spongy mesophyll tissue, respectively. Sun, shade, and intermediate light leaves are modeled by varying the thicknesses of these two regions. Values of the geometric model parameters are obtained by comparing geometric properties of the model with experimental data of other investigators found from dissection of real leaves. The model provides a quantitative estimate of the extent to which the concentration of gaseous CO2 varies locally within the leaf interior.


1977 ◽  
Vol 99 (2) ◽  
pp. 85-90 ◽  
Author(s):  
L. S. Bonderson

The system properties of passivity, losslessness, and reciprocity are defined and their necessary and sufficient conditions are derived for a class of linear one-dimensional multipower distributed systems. The utilization of power product pairs as state variables and the representation of the dynamics in first-order form allows results completely analogous to those for lumped-element systems.


Author(s):  
M. Azeredo ◽  
◽  
V. Priimenko ◽  

This work presents a mathematical algorithm for modeling the propagation of poroelastic waves. We have shown how the classical Biot equations can be put into Ursin’s form in a plane-layered 3D porous medium. Using this form, we have derived explicit for- mulas that can be used as the basis of an efficient computational algorithm. To validate the algorithm, numerical simulations were performed using both the poroelastic and equivalent elastic models. The results obtained confirmed the proposed algorithm’s reliability, identify- ing the main wave events in both low-frequency and high-frequency regimes in the reservoir and laboratory scales, respectively. We have also illustrated the influence of some physical parameters on the attenuation and dispersion of the slow wave.


Author(s):  
Deoras Prabhudharwadkar ◽  
Chris Bailey ◽  
Martin Lopez de Bertodano ◽  
John R. Buchanan

This paper describes in detail the assessment of the CFD code CFX to predict adiabatic liquid-gas two-phase bubbly flow. This study has been divided into two parts. In the first exercise, the effect of Lift Force, Wall Force and the Turbulent Diffusion Force have been assessed using experimental data from the literature for air-water upward bubbly flows through a pipe. The data used here had a characteristic near wall void peaking which was largely influenced by the joint action of the three forces mentioned above. The simulations were performed with constant bubble diameter assuming no bubble interactions. This exercise resulted in selection of the most appropriate closure form and closure coefficients for the above mentioned forces for the range of flow conditions chosen. In the second exercise, the One-Group Interfacial Area Transport equation was introduced in the two-fluid model of CFX. The interfacial area density plays important role in the correct prediction of interfacial mass, momentum and energy transfer and is affected by bubble breakup and coalescence processes in adiabatic flows. The One-Group Interfacial Area Transport Equation (IATE) has been developed and implemented for one-dimensional models and validated using cross-sectional area averaged experimental data over the last decade by various researchers. The original one-dimensional model has been extended to multidimensional flow predictions in this study and the results are presented in this paper. The paper also discusses constraints posed by the commercial CFD code CFX and the solutions worked out to obtain the most accurate implementation of the model.


2016 ◽  
Vol 121 (9) ◽  
pp. 6698-6721 ◽  
Author(s):  
J. Germán Rubino ◽  
Eva Caspari ◽  
Tobias M. Müller ◽  
Marco Milani ◽  
Nicolás D. Barbosa ◽  
...  

2012 ◽  
Vol 155-156 ◽  
pp. 12-17 ◽  
Author(s):  
Lian Xu Wang ◽  
Da Wei Qu ◽  
Chang Qing Song ◽  
Ye Tian

To research the performance optimization of high speed car diesel engine,firstly according to the characteristic of car diesel engine with Variable Nozzle Turbocharger (VNT), one-dimensional cycle model of the engine was established by using simulation software BOOST and validated by experimental data in this paper. The turbine blades’ opening corresponding to different speed was determined. Therefore the problem that the VNT surges at low engine speed and the inlet air flow is insufficient at high speed was solved. Based on the above model, this paper improved the efficiency of the engine by optimizing the compression ratio and the distribution phase of camshaft and then used the experimental data to check the simulation results. Meanwhile the fuel consumption and the possibility of the engine operation roughness decreased.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Ahmed M Helmi

Floodways, where a road embankment is permitted to be overtopped by flood water, are usually designed as broad-crested weirs. Determination of the water level above the floodway is crucial and related to road safety. Hydraulic performance of floodways can be assessed numerically using 1-D modelling or 3-D simulation using computational fluid dynamics (CFD) packages. Turbulence modelling is one of the key elements in CFD simulations. A wide variety of turbulence models are utilized in CFD packages; in order to identify the most relevant turbulence model for the case in question, 96 3-D CFD simulations were conducted using Flow-3D package, for 24 broad-crested weir configurations selected based on experimental data from a previous study. Four turbulence models (one-equation, k-ε, RNG k-ε, and k-ω) ere examined for each configuration. The volume of fluid (VOF) algorithm was adopted for free water surface determination. In addition, 24 1-D simulations using HEC-RAS-1-D were conducted for comparison with CFD results and experimental data. Validation of the simulated water free surface profiles versus the experimental measurements was carried out by the evaluation of the mean absolute error, the mean relative error percentage, and the root mean square error. It was concluded that the minimum error in simulating the full upstream to downstream free surface profile is achieved by using one-equation turbulence model with mixing length equal to 7% of the smallest domain dimension. Nevertheless, for the broad-crested weir upstream section, no significant difference in accuracy was found between all turbulence models and the one-dimensional analysis results, due to the low turbulence intensity at this part. For engineering design purposes, in which the water level is the main concern at the location of the flood way, the one-dimensional analysis has sufficient accuracy to determine the water level.


Sign in / Sign up

Export Citation Format

Share Document