A LABORATORY INVESTIGATION OF ELECTRICAL ANISOTROPY IN PRECAMBRIAN ROCKS

Geophysics ◽  
1972 ◽  
Vol 37 (6) ◽  
pp. 1022-1038 ◽  
Author(s):  
D. G. Hill

Laboratory electrical anisotropy measurements were made on selected dry metasediments and metavolcanics from the Precambrian complex of northern Michigan. Directional ac conductivity and dielectric‐constant values were obtained in six or more directions for each sample. These directional values were used to obtain a least‐square determination of the six independent coefficients needed to completely define the symmetric second‐rank, conductivity and dielectric constant tensors. Tensor principal values and directions were obtained from these coefficients. The results of this investigation indicate that metamorphic rocks may be characterized by strongly anisotropic electrical properties. The tensor representation surface symmetries reflect the symmetry of the rock fabric. Electrical anisotropy tends to increase, and the symmetry of the representation surfaces tends to decrease, at lower signal frequencies. The frequency spectra for all samples follow a relaxation‐type model, with critical frequencies occurring between 200 and 600 hz, indicating interfacial polarization as the dominant polarization mechanism.

Author(s):  
Kjersti Gjønnes ◽  
Jon Gjønnes

Electron diffraction intensities can be obtained at large scattering angles (sinθ/λ ≥ 2.0), and thus structure information can be collected in regions of reciprocal space that are not accessable with other diffraction methods. LACBED intensities in this range can be utilized for determination of accurate temperature factors or for refinement of coordinates. Such high index reflections can usually be treated kinematically or as a pertubed two-beam case. Application to Y Ba2Cu3O7 shows that a least square refinememt based on integrated intensities can determine temperature factors or coordinates.LACBED patterns taken in the (00l) systematic row show an easily recognisable pattern of narrow bands from reflections in the range 15 < l < 40 (figure 1). Integrated intensities obtained from measured intensity profiles after subtraction of inelastic background (figure 2) were used in the least square fit for determination of temperature factors and refinement of z-coordinates for the Ba- and Cu-atoms.


2020 ◽  
Vol 17 (1) ◽  
pp. 87-94
Author(s):  
Ibrahim A. Naguib ◽  
Fatma F. Abdallah ◽  
Aml A. Emam ◽  
Eglal A. Abdelaleem

: Quantitative determination of pyridostigmine bromide in the presence of its two related substances; impurity A and impurity B was considered as a case study to construct the comparison. Introduction: Novel manipulations of the well-known classical least squares multivariate calibration model were explained in detail as a comparative analytical study in this research work. In addition to the application of plain classical least squares model, two preprocessing steps were tried, where prior to modeling with classical least squares, first derivatization and orthogonal projection to latent structures were applied to produce two novel manipulations of the classical least square-based model. Moreover, spectral residual augmented classical least squares model is included in the present comparative study. Methods: 3 factor 4 level design was implemented constructing a training set of 16 mixtures with different concentrations of the studied components. To investigate the predictive ability of the studied models; a test set consisting of 9 mixtures was constructed. Results: The key performance indicator of this comparative study was the root mean square error of prediction for the independent test set mixtures, where it was found 1.367 when classical least squares applied with no preprocessing method, 1.352 when first derivative data was implemented, 0.2100 when orthogonal projection to latent structures preprocessing method was applied and 0.2747 when spectral residual augmented classical least squares was performed. Conclusion: Coupling of classical least squares model with orthogonal projection to latent structures preprocessing method produced significant improvement of the predictive ability of it.


1966 ◽  
Vol 46 (2) ◽  
pp. 210-216 ◽  
Author(s):  
A. Carrelli ◽  
F. Fittipaldi ◽  
L. Pauciulo

1964 ◽  
Vol 54 (6A) ◽  
pp. 2037-2047
Author(s):  
Agustin Udias

abstract In this paper a numerical approach to the determination of focal mechanisms based on the observation of the polarization of the S wave at N stations is presented. Least-square methods are developed for the determination of the orientation of the single and double couple sources. The methods allow a statistical evaluation of the data and of the accuracy of the solutions.


Author(s):  
Hassan A.m. Hendawy ◽  
Hanan M. Elwy ◽  
Amany M. Fekry

Objective: This work is focused on the construction of simple and sensitive electrochemical sensor for quantitative determination of dorzolamide (DOR) and timolol maleate (TIM). This method is based on the incorporation of multiwall carbon nanotubes (MWCNT) into the carbon paste electrode which improve the characteristics of the electrode.Methods: The electrochemical response of modified electrode was based on voltammetric oxidation, using cyclic voltammetry (CV) and impedance spectroscopy (EIS). The structural morphology of the surface modified electrode was characterized by scanning electron microscope (SEM). Quantitative analysis for each of the two compounds in a mixture has been examined by using of chemometric tools for resolving overlapping signals. The prediction performance of the chemometric method was analyzed by principal component regression (PCR) and partial least square (PLS).Results: Fractional factorial design was constructed from set of synthetic mixtures of two drugs in concentration ranges of 0.05 to 1.6µg/ml for DOR and 1.5-20 µg/ml for TIM. Under optimum experimental conditions, DOR and TIM gave rectilinear response over the concentration range of 0.072-1.88 µg/ml and 1.16-20.84 µg/ml, respectively. The limit of detection (LOD) was found to be 0.098 and 1.025 µg/ml, for DOR and TIM, respectively. It found that the % of relative prediction error (RPE) was acceptable and satisfactory.Conclusion: In these work, for the first time, a new voltammetric simultaneous method developed for a rapid and efficient determination of DOR and TIM from eye dropper sample at nano modified electrode with satisfactory results. These results indicate that MWCNT holds great promise in practical application.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1097-1103 ◽  
Author(s):  
V. PAVLÍNEK ◽  
P. SÁHA ◽  
T. KITANO ◽  
J. HROMÁDKOVÁ ◽  
J. STEJSKAL ◽  
...  

Investigation of the electrorheological effect of silicone-oil suspensions of silica particles coated with polyaniline base in a DC electric field revealed that breaking stress, as a criterion the intensity of the electrorheological phenomenon, steeply increased at first with coating thickness. At relatively low polyaniline content (volume fraction ≈ 0.05), it has reached a value several times higher than that with suspension of pure silica. Then they became virtually constant or slightly increased. The frequency spectra of dielectric characteristics of these systems reflect high relaxation times. The results suggest that the interfacial polarization of particles is predominantly controlled by polarizability of their surface layer, and the influence of the thickness is of secondary importance.


Sign in / Sign up

Export Citation Format

Share Document