The influence of the planted geophone on seismic land data

Geophysics ◽  
1980 ◽  
Vol 45 (8) ◽  
pp. 1239-1253 ◽  
Author(s):  
G. M. Hoover ◽  
J. T. O’Brien

Characteristics of the seismic data acquisition system that previously have been ignored become important as more sophisticated interpretive methods based on broader frequency bandwidths are developed to extract stratigraphic information from land data in hydrocarbon and mineral exploration. Theoretical and experimental results indicate that the geophone plant can be approximated by a damped oscillatory coupling, properties dependent upon the geophone mass, dimension of earth contact, and local soil consolidation. A massive geophone with minimal earth contact exhibits a low‐frequency plant resonance with weak damping and acts as a low‐pass filter to eliminate the high‐frequency components of a recorded signal. A lightweight geophone with large earth contact exhibits a high‐frequency plant resonance with strong damping and, consequently, filtering effects are minimal if the plant resonance is well above the signal bandwidth. Although signal filtering influences are weak for strong damping, phase delays can introduce errors of several milliseconds which resemble static errors. Additional complications arise since these time shifts are frequency dependent and, consequently, not identical for all reflection events in a seismic trace. The resonant frequency of the geophone plant increases with increased soil consolidation; however, damping demonstrates only a weak dependence upon consolidation. All of these factors can limit the effectiveness of common‐depth‐point (CDP) stacking methods if the proper technique is not practiced in the acquisition of broad‐bandwidth seismic data.

2013 ◽  
Vol 427-429 ◽  
pp. 2033-2036
Author(s):  
Di Fan ◽  
Yan Gao ◽  
Yue Zhao

As the key junction between the ground and underground, hoisting systems as well as mines themselves are of vital importance to coalmine production. Laser ranging method is studied as a new solution of getting the real-time position directly. Furthermore, multi-scale phase based laser ranging principles are utilized in the system. The paper is aimed to conduct research into the problems existing in standard signal generating while using laser to locating the hoisting container, and to design standard sine generator circuits with DDS technology and DDS devices AD9850 to generate multiple frequency standard signals. In view of the serious noise disturbance in high frequency output, 4-order Chebyshev low-pass filter is designed, by using the integrated analog filters LT 6600-15, to filter the sine signals from AD9850 and to effectively weaken the noise disturbance. The established practical circuits are tested, obtaining trillion level high frequency and low frequency sine signals and fulfilling the requirements for the location system of hoisting containers.


2020 ◽  
Author(s):  
Eugene Palovcak ◽  
Daniel Asarnow ◽  
Melody G. Campbell ◽  
Zanlin Yu ◽  
Yifan Cheng

AbstractIn cryogenic electron microscopy (cryo-EM) of radiation-sensitive biological samples, both the signal-to-noise ratio (SNR) and the contrast of images are critically important in the image processing pipeline. Classic methods improve low-frequency image contrast experimentally, by imaging with high defocus, or computationally, by applying various types of low-pass filter. These contrast improvements typically come at the expense of high-frequency SNR, which is suppressed by high-defocus imaging and removed by low pass filtration. Here, we demonstrate that a convolutional neural network (CNN) denoising algorithm can be used to significantly enhance SNR and generate contrast in cryo-EM images. We provide a quantitative evaluation of bias introduced by the denoising procedure and its influences on image processing and three-dimensional reconstructions. Our study suggests that besides enhancing the visual contrast of cryo-EM images, the enhanced SNR of denoised images may facilitate better outcomes in the other parts of the image processing pipeline, such as classification and 3D alignment. Overall, our results provide a ground of using denoising CNNs in the cryo-EM image processing pipeline.


2018 ◽  
Vol 120 (6) ◽  
pp. 2847-2857 ◽  
Author(s):  
Wei Dong ◽  
Anping Xia ◽  
Patrick D. Raphael ◽  
Sunil Puria ◽  
Brian Applegate ◽  
...  

There is indirect evidence that the mammalian cochlea in the low-frequency apical and the more commonly studied high-frequency basal regions function in fundamentally different ways. Here, we directly tested this hypothesis by measuring sound-induced vibrations of the organ of Corti (OoC) at three turns of the gerbil cochlea using volumetric optical coherence tomography vibrometry (VOCTV), an approach that permits noninvasive imaging through the bone. In the apical turn, there was little frequency selectivity, and the displacement-vs.-frequency curves had low-pass filter characteristics with a corner frequency of ~0.5–0.9 kHz. The vibratory magnitudes increased compressively with increasing stimulus intensity at all frequencies. In the middle turn, responses were similar except for a slight peak in the response at ~2.5 kHz. The gain was ~50 dB at the peak and 30–40 dB at lower frequencies. In the basal turn, responses were sharply tuned and compressively nonlinear, consistent with observations in the literature. These data demonstrated that there is a transition of the mechanical response of the OoC along the length of the cochlea such that frequency tuning is sharper in the base than in the apex. Because the responses are fundamentally different, it is not appropriate to simply frequency shift vibratory data measured at one cochlear location to predict the cochlear responses at other locations. Furthermore, this means that the number of hair cells stimulated by sound is larger for low-frequency stimuli and smaller for high-frequency stimuli for the same intensity level. Thus the mechanisms of central processing of sounds must vary with frequency. NEW & NOTEWORTHY A volumetric optical coherence tomography and vibrometry system was used to probe cochlear mechanics within the intact gerbil cochlea. We found a gradual transition of the mechanical response of the organ of Corti along the length of the cochlea such that tuning at the base is dramatically sharper than that at the apex. These data help to explain discrepancies in the literature regarding how the cochlea processes low-frequency sounds.


Author(s):  
Motoyoshi Sato ◽  
Ryo Shimamoto ◽  
Masanobu Mizoguchi

Keeping core parts of machines in proper condition is essential to improving productivity and quality of products. Metallic wear of knitting needles for circular knitting machines should be controlled within specific conditions. Currently, inspections of them are visually performed by skilled examiners, and automated inspection systems, which can measure 3-D shapes, are demanded. Because the needles have mirror glossed, complexly shaped surfaces, conventional lighting method, such as dome lights and diffuse on-axis lights, cannot irradiate the light evenly throughout the object and causes brightness unevenness, and that leads to 3-D measurement errors in image processors. To increase accuracy, we propose a new 3-D measurement system which equips omnidirectional EL (electroluminescence) lightings and DEHF (Dynamic Enhancement of High Frequency) method. Here, the system applies the shape from focus method, which moves the optical system vertically with respect to the fixed object and obtains a sequence of images that correspond to different levels of object focus. In the formation process of shallow depth of field microscopic images, a defocused imaging system plays the role of a low-pass filter. For this reason, the regions with high frequency components can be regarded as a focused area. The high frequency components are finally regarded as the contour of the object by the method. It recovers the 3-D shape of the object by estimation of height of the contours each image and arranging in the original order of the sequence of the height of the contours. The followings are novelties of our proposed system. Firstly, omnidirectional EL lightings irradiate an object with uniform lights from all directions. They are composed of the following lights: coaxial through objective lens, object lens perimeter, side and bottom lights, and each of which can adjust brightness; therefore they can reduce unevenness of brightness on the object. We adopted inorganic EL sheet as the lighting device. EL sheet is capable of plane emission and prevent the occurrence of the unevenness of the irradiated light by the point source of light. Secondly, algorithm for shape from focus can be improved by our DEHF method. Even if the above lightings are applied, there still remains low frequency non-uniformity of brightness. DEFH method removes the low frequency by subtracting mean filtered image from original one, and remaining high frequency content can be emphasized. We built a microscope based prototype system and conducted experiments. Through them, the validity of our proposed method was confirmed.


1993 ◽  
Vol 47 (4) ◽  
pp. 489-500 ◽  
Author(s):  
J. F. Power ◽  
M. C. Prystay

Homodyne photothermal spectrometry (HPS) is a very wide bandwidth signal recovery technique which uses many of the elements of lock-in detection at very low cost. The method uses a frequency sweep, with a high-frequency bandwidth of up to 10 MHz, to excite a linear photothermal system. The response sweep of the photothermal system is downshifted into a bandwidth of a few kilohertz by means of in-phase mixing with the excitation sweep with the use of a four-quadrant double-balanced mixer and a low-pass filter. Under conditions derived from theory, the filter output gives a good approximation to the real part of the photothermal system's frequency response, dispersed as a function of time. From a recording of this signal, the frequency and impulse response of the photothermal system are rapidly recovered at very high resolution. The method has been tested with the use of laser photopyroelectric effect spectrometry and provides an inexpensive, convenient method for the recovery of high-frequency photothermal signals.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2931
Author(s):  
Waldemar Jendernalik ◽  
Jacek Jakusz ◽  
Grzegorz Blakiewicz

Buffer-based CMOS filters are maximally simplified circuits containing as few transistors as possible. Their applications, among others, include nano to micro watt biomedical sensors that process physiological signals of frequencies from 0.01 Hz to about 3 kHz. The order of a buffer-based filter is not greater than two. Hence, to obtain higher-order filters, a cascade of second-order filters is constructed. In this paper, a more general method for buffer-based filter synthesis is developed and presented. The method uses RLC ladder prototypes to obtain filters of arbitrary orders. In addition, a set of novel circuit solutions with ultra-low voltage and power are proposed. The introduced circuits were synthesized and simulated using 180-nm CMOS technology of X-FAB. One of the designed circuits is a fourth-order, low-pass filter that features: 100-Hz passband, 0.4-V supply voltage, power consumption of less than 5 nW, and dynamic range above 60 dB. Moreover, the total capacitance of the proposed filter (31 pF) is 25% lower compared to the structure synthesized using a conventional cascade method (40 pF).


2021 ◽  
Vol 15 ◽  
Author(s):  
Islam Halawa ◽  
Katharina Reichert ◽  
Aman S. Aberra ◽  
Martin Sommer ◽  
Angel V. Peterchev ◽  
...  

Introduction: High frequency repetitive transcranial magnetic stimulation applied to the motor cortex causes an increase in the amplitude of motor evoked potentials (MEPs) that persists after stimulation. Here, we focus on the aftereffects generated by high frequency controllable pulse TMS (cTMS) with different directions, intensities, and pulse durations.Objectives: To investigate the influence of pulse duration, direction, and amplitude in correlation to induced depolarization on the excitatory plastic aftereffects of 5 Hz repetitive transcranial magnetic stimulation (rTMS) using bidirectional cTMS pulses.Methods: We stimulated the hand motor cortex with 5 Hz rTMS applying 1,200 bidirectional pulses with the main component durations of 80, 100, and 120 μs using a controllable pulse stimulator TMS (cTMS). Fourteen healthy subjects were investigated in nine sessions with 80% resting motor threshold (RMT) for posterior-anterior (PA) and 80 and 90% RMT anterior-posterior (AP) induced current direction. We used a model approximating neuronal membranes as a linear first order low-pass filter to estimate the strength–duration time constant and to simulate the membrane polarization produced by each waveform.Results: PA and AP 5 Hz rTMS at 80% RMT produced no significant excitation. An exploratory analysis indicated that 90% RMT AP stimulation with 100 and 120 μs pulses but not 80 μs pulses led to significant excitation. We found a positive correlation between the plastic outcome of each session and the simulated peak neural membrane depolarization for time constants >100 μs. This correlation was strongest for neural elements that are depolarized by the main phase of the AP pulse, suggesting the effects were dependent on pulse direction.Conclusions: Among the tested conditions, only 5 Hz rTMS with higher intensity and wider pulses appeared to produce excitatory aftereffects. This correlated with the greater depolarization of neural elements with time constants slower than the directly activated neural elements responsible for producing the motor output (e.g., somatic or dendritic membrane).Significance: Higher intensities and wider pulses seem to be more efficient in inducing excitation. If confirmed, this observation could lead to better results in future clinical studies performed with wider pulses.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Sheng Zhang ◽  
Suoliang Chang ◽  
Handong Huang ◽  
Yinping Dong ◽  
Youyi Shen ◽  
...  

Subsalt carbonate rocks in Brazil’s deepwater region have broad prospects for oil and gas exploration and development. Due to the low-frequency bandwidth of the seismic data and the poor signal quality for this kind of reservoir target, there is a demand for accurate seismic prediction methods. We employ the facies-controlled inversion using a low-pass filter matrix to ensure the accuracy of the low frequency and to improve the robustness of the inversion results. We integrated the concept of adaptive regularization constraint of the Zoeppritz equation into the generalized linear inversion theory framework, which overcomes the shortcomings of the approximate equation. Making full use of the large angle prestack seismic information, Zoeppritz equation inversion improves the accuracy of the inversion results. The application of this method in carbonate reservoirs under extremely thick salts in the Santos Basin of Brazil indicates the feasibility and practicality of the proposed integrated prediction method.


2019 ◽  
Vol 29 (07) ◽  
pp. 2050109
Author(s):  
Yan Li ◽  
Yong Liang Li

A novel capacitance multiplier is proposed to implement an ultra-low-frequency filter for physiological signal processing in biomedical applications. With the proposed multiplier, a simple first-order low-pass filter achieves a [Formula: see text]3-dB frequency of 33.4[Formula: see text]μHz with a 1-pF capacitance and a 20[Formula: see text]k[Formula: see text] resistance. This corresponds to a multiplication factor of as large as [Formula: see text]. By changing the controlling terminal, the [Formula: see text]3-dB frequency can be tuned in a wide range of 33.4[Formula: see text]μHz–6.3[Formula: see text]kHz.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. P61-P73 ◽  
Author(s):  
Lasse Amundsen ◽  
Ørjan Pedersen ◽  
Are Osen ◽  
Johan O. A. Robertsson ◽  
Martin Landrø

The source depth influences the frequency band of seismic data. Due to the source ghost effect, it is advantageous to deploy sources deep to enhance the low-frequency content of seismic data. But, for a given source volume, the bubble period decreases with the source depth, thereby degrading the low-frequency content. At the same time, deep sources reduce the seismic bandwidth. Deploying sources at shallower depths has the opposite effects. A shallow source provides improved high-frequency content at the cost of degraded low-frequency content due to the ghosting effect, whereas the bubble period increases with a lesser source depth, thereby slightly improving the low-frequency content. A solution to the challenge of extending the bandwidth on the low- and high-frequency side is to deploy over/under sources, in which sources are towed at two depths. We have developed a mathematical ghost model for over/under point sources fired in sequential and simultaneous modes, and we have found an inverse model, which on common receiver gathers can jointly perform designature and deghosting of the over/under source measurements. We relate the model for simultaneous mode shooting to recent work on general multidepth level array sources, with previous known solutions. Two numerical examples related to over/under sequential shooting develop the main principles and the viability of the method.


Sign in / Sign up

Export Citation Format

Share Document