The Fresnel zone for P-SV waves

Geophysics ◽  
1991 ◽  
Vol 56 (3) ◽  
pp. 360-364 ◽  
Author(s):  
David W. S. Eaton ◽  
Robert R. Stewart ◽  
Mark P. Harrison

Mode‐converted (P-SV) reflections in field data contain information about an area on the reflecting boundary, rather than a single point. For unmigrated data, the total area contributing to the observed reflection amplitude is approximated by the Fresnel zone. We derive formulas for the P-SV Fresnel‐zone radius for both surface and VSP geometries. In the surface case, the Fresnel radius can be expressed in a form similar to that of the P-P case by substitution of the P-SV single‐layer migration velocity. Numerical modeling shows that the relative changes in size and shape of the P-SV Fresnel zone as a function of offset are not large and are comparable to the P-P case. For a given depth and frequency, the P-SV Fresnel radius is smaller than the P-P Fresnel radius by a factor of about 0.8; hence the lateral resolution of converted‐wave (P-SV) data may be somewhat better than the P-P data. Two sample calculations using field data are presented. For the VSP example, the P-SV Fresnel radius (184 m) is smaller than the corresponding P-P Fresnel radius (231 m), but for the surface example the two are similar (315 m and 295 m, respectively), because of differences in the frequency contents of the reflected P and SV waveforms.

Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.


2009 ◽  
Vol 416 ◽  
pp. 234-237
Author(s):  
Zhong Ming Cui ◽  
Peng Hui Deng ◽  
Lei Du

The dressing processes are conducted on the diamond grinding wheels using the rotary diamond tools and compared between the single point diamond dresser and the rotary diamond dressing tool in the following aspects, including the dressing force, tool wearing, dressing efficiency. The result shows that, the dressing performance of the rotary diamond tools is remarkable better than that of the conventional dressing method.


2014 ◽  
Vol 10 (1) ◽  
pp. 172-183 ◽  
Author(s):  
Sushil B. Bajracharya

This paper seeks to investigate into the aspects of thermal performance of traditional residential buildings in traditional settlements of Kathmandu valley. This study proceeds to analyze the detailed field data collected, with a view to identify the indoor thermal environment with respect to outdoor thermal environment in different seasons. This paper also compares the thermal performance of traditional buildings with modern residential buildings of traditional settlements of the valley. There is a regression analysis to obtain information about the thermal environment of different traditional and modern residential buildings with different conditions. The paper concludes that, thermal performance of traditional residential building, adapted in various ways to the changing thermal regime for thermal comfort is better than that of contemporary buildings.DOI: http://dx.doi.org/10.3126/jie.v10i1.10898Journal of the Institute of Engineering, Vol. 10, No. 1, 2014,  pp. 172–183


Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 652-664 ◽  
Author(s):  
N. C. Wagner ◽  
B. D. Maxwell ◽  
M. L. Taper ◽  
L. J. Rew

To develop a more complete understanding of the ecological factors that regulate crop productivity, we tested the relative predictive power of yield models driven by five predictor variables: wheat and wild oat density, nitrogen and herbicide rate, and growing-season precipitation. Existing data sets were collected and used in a meta-analysis of the ability of at least two predictor variables to explain variations in wheat yield. Yield responses were asymptotic with increasing crop and weed density; however, asymptotic trends were lacking as herbicide and fertilizer levels were increased. Based on the independent field data, the three best-fitting models (in order) from the candidate set of models were a multiple regression equation that included all five predictor variables (R2= 0.71), a double-hyperbolic equation including three input predictor variables (R2= 0.63), and a nonlinear model including all five predictor variables (R2= 0.56). The double-hyperbolic, three-predictor model, which did not include herbicide and fertilizer influence on yield, performed slightly better than the five-variable nonlinear model including these predictors, illustrating the large amount of variation in wheat yield and the lack of concrete knowledge upon which farmers base their fertilizer and herbicide management decisions, especially when weed infestation causes competition for limited nitrogen and water. It was difficult to elucidate the ecological first principles in the noisy field data and to build effective models based on disjointed data sets, where none of the studies measured all five variables. To address this disparity, we conducted a five-variable full-factorial greenhouse experiment. Based on our five-variable greenhouse experiment, the best-fitting model was a new nonlinear equation including all five predictor variables and was shown to fit the greenhouse data better than four previously developed agronomic models with anR2of 0.66. Development of this mathematical model, through model selection and parameterization with field and greenhouse data, represents the initial step in building a decision support system for site-specific and variable-rate management of herbicide, fertilizer, and crop seeding rate that considers varying levels of available water and weed infestation.


2020 ◽  
Author(s):  
Sepidehalsadat Hendi ◽  
Mostafa Gorjian ◽  
Gilles Bellefleur ◽  
Christopher D. Hawkes ◽  
Don White

Abstract. Fiber optic sensing technology has recently become popular for oil and gas, mining, geotechnical engineering, and hydrogeology applications. With a successful track record in many applications, distributed acoustic sensing using straight fiber optic cables has become a method of choice for seismic studies. However, distributed acoustic sensing using straight fiber optic cables is not able to detect off-axial strain, hence a helically wound cable design was introduced to overcome this limitation. The helically wound cable field data in New Afton deposit showed that the quality of the data is tightly dependent on the incident angle (the angle between the ray and normal vector of the surface) and surrounding media. We introduce a new analytical two-dimensional approach to determine the dynamic strain of a helically wound cable in terms of incident angle in response to elastic plane waves propagating through multilayered media. The method can be used to quickly and efficiently assess the effects of various materials surrounding a helically wound cable. Results from the proposed analytical model are compared with results from numerical modeling obtained with COMSOL Multiphysics, for scenarios corresponding to a real installation of helically wound cable deployed underground at the New Afton mine in British Columbia, Canada. Results from the analytical model are consistent with numerical modeling results. Our modeling results demonstrate the effects of cement quality, and casing installment on the quality of the helically-wound cable response. Numerical modeling results and field data suggest that, even if reasonably effective coupling achieved, the soft nature of the rocks in these intervals would result in low fiber strains for the HWC. The proposed numerical modeling workflow would be applied for more complicated scenarios (e.g., non-linear material constitutive behaviour, and the effects of pore fluids). The results of this paper can be used as a guideline for analyzing the effect of surrounding media and incident angle on the response of helically wound cable, optimizing the installation of helically wound cable in various conditions, and to validate boundary conditions of 3-D numerical model built for analyzing complex scenarios.


2019 ◽  
Vol 11 (4) ◽  
pp. 428 ◽  
Author(s):  
Haojun Li ◽  
Jingxin Xiao ◽  
Weidong Zhu

The time-varying characteristic of the bias in the GPS code observation is investigated using triple-frequency observations. The method for estimating the combined code bias is presented and the twelve-month (1 January–31 December 2016) triple-frequency GPS data set from 114 International GNSS Service (IGS) stations is processed to analyze the characteristic of the combined code bias. The results show that the main periods of the combined code bias are 12, 8, 6, 4, 4.8 and 2.67 h. The time-varying characteristic of the combined code bias, which is the combination of differential code bias (DCB) (P1–P5) and DCB (P1–P2), shows that the real satellite DCBs are also time-varying. The difference between the two sets of the computed constant parts of the combined code bias, with the IGS DCB products of DCB (P1–P2) and DCB (P1–P2) and the mean of the estimated 24-h combined code bias series, further show that the combined code bias cannot be replaced by the DCB (P1–P2) and DCB (P1–P5) products. The time-varying part of inter-frequency clock bias (IFCB) can be estimated by the phase and code observations and the phase based IFCB is the combinations of the triple-frequency satellite uncalibrated phase delays (UPDs) and the code-based IFCB is the function of the DCBs. The performances of the computed the IFCB with different methods in single point positioning indicate that the accuracy for the constant part of the combined code bias is reduced, when the IGS DCB products are used to compute. These performances also show that the time-varying part of IFCB estimated with phase observation is better than that of code observation. The predicted results show that 98% of the predicted constant part of the combined code bias can be corrected and the attenuation of the predicted accuracy is much less evident. However, the accuracy of the predicted time-varying part decreases significantly with the predicted time.


2014 ◽  
Vol 556-562 ◽  
pp. 4672-4676
Author(s):  
Xian Hao Zhang ◽  
Wei Qi Feng ◽  
Shuo Ling Xiang

According to the theory that electromagnetic waves diffract when approaching obstacles, the thesis focuses on the airport terminal area obstacles affection on the performance of Instrument Landing System (ILS). It is done through calculating of the first Fresnel zone radius and clearance and the electromagnetic environment radiation distribution of the ground station via Single-Wedge Model on the basis of combining the Instrument Landing Systemin the civil aviation airport terminal area and abstracted general theoretical model. This research can provide theoretical basis for the arrangement of navigation station and evaluation of the ILS glide slope in a practical airport environment. Therefore, the study is of magnificent importance for the safe operation of the civil aviation airport.


2012 ◽  
Vol 512-515 ◽  
pp. 1607-1610
Author(s):  
Yang Xu ◽  
Yong Zou ◽  
Tao Luan

Economizers are widely employed in the boiler system to increase efficiency and save energy. However one prominent problem is the severe corrosion of economizer due to the decrease of the exhaust temperature of boiler. Ni–P/Cu/Ni-P multilayer coatings, which could effectively improve the corrosion resistance of the facilities in economizer, are introduced in the present work. The three-layer coatings, whose composition is Ni–P/Cu/Ni-P from substrate to surface, were prepared using dual baths (acidic hypophosphite-reduced electroless nickel bath and acidic replacement electroless copper bath). The corrosion resistance of the coatings was evaluated by porosity and electrochemical tests. The results of porosity evaluation show that all the multilayer coatings performed better than the single-layer coatings of similar thickness. Similarly, The electrochemical tests showed lower corrosion current density for the multilayer coatings in 3.5 wt.% NaCl aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document