Electroless Multilayer Coatings Used in the Protection of Thermosyphon Economizer from Corrosion

2012 ◽  
Vol 512-515 ◽  
pp. 1607-1610
Author(s):  
Yang Xu ◽  
Yong Zou ◽  
Tao Luan

Economizers are widely employed in the boiler system to increase efficiency and save energy. However one prominent problem is the severe corrosion of economizer due to the decrease of the exhaust temperature of boiler. Ni–P/Cu/Ni-P multilayer coatings, which could effectively improve the corrosion resistance of the facilities in economizer, are introduced in the present work. The three-layer coatings, whose composition is Ni–P/Cu/Ni-P from substrate to surface, were prepared using dual baths (acidic hypophosphite-reduced electroless nickel bath and acidic replacement electroless copper bath). The corrosion resistance of the coatings was evaluated by porosity and electrochemical tests. The results of porosity evaluation show that all the multilayer coatings performed better than the single-layer coatings of similar thickness. Similarly, The electrochemical tests showed lower corrosion current density for the multilayer coatings in 3.5 wt.% NaCl aqueous solutions.

2021 ◽  
Vol 901 ◽  
pp. 208-218
Author(s):  
Kun Lin Kuo ◽  
Yen Liang Su ◽  
Wen Hsien Kao ◽  
Yin Hsiang Mao ◽  
Tang Wei Liang

NbN/TiN, TiNb-NX and CH-TiNb-N12 coatings are deposited by RF magnetron sputtering to determine the tribological properties and corrosion resistance. ‘x’ is the flux rate for nitrogen and ‘CH’ signifies the addition of acetylene. In terms of the corrosion resistance, all the coatings have a similar corrosion potential and NbN/TiN multilayer coatings exhibit the lowest corrosion current. The NbN/TiN multilayer has a low pitting potential so severe pitting corrosion is observed on the surface. CH-TiNb-N12 coating is most resistant to corrosion and exhibits no pitting before the test ends. In contact with counter-bodies with a Si3N4 ball or an AISI 52100 ball, a CH-TiNb-N12 coating acts as a solid lubricant so the wear mechanism shows the least abrasion. The CH-TiNb-N12 coating has the lowest wear rate and coefficient of friction for sliding against Si3N4 and AISI 52100 balls. The wear rate is respectively 3.2 and 6.8 times less than that for SKH51 substrate when sliding against Si3N4 and AISI 52100 balls. The results for this study show that a TiNb-N12-CH coating has the best tribological properties and corrosion resistance.


2015 ◽  
Vol 60 (2) ◽  
pp. 1003-1008 ◽  
Author(s):  
G.L. Zhao ◽  
Y. Zou ◽  
Y.L. Hao ◽  
Z.D. Zou

Abstract Ni-P/Cu/Ni-P multilayer coatings were prepared by deposition of Cu layer between two Ni–P layers. The Cu layer was deposited by metal displacement reaction between Cu2+ and Fe atoms. Corrosion behavior of single-layer Ni-P coatings, double-layer Ni-P/Cu coatings, and three-layer Ni-P/Cu/Ni-P coatings were investigated by electrochemical tests in 3.5% NaCl solution. The three-layer coatings exhibited more positive Ecorr and decreased Icorr compared with conventional single-layer Ni-P coatings, which indicated an improved corrosion resistance. The polarization curves of the three-layer coatings were characterized by two passive regions. The improved corrosion resistance was not only attributed to the function of the blocked pores of Cu. The Cu interlayer also acted as a sacrificial layer instead of a barrier in the coatings, which altered the corrosion mechanism and further improved the corrosion resistance of the coatings.


2011 ◽  
Vol 66-68 ◽  
pp. 1668-1675 ◽  
Author(s):  
Xue Tao Yuan ◽  
Zhi Qiang Hua ◽  
Lei Wang ◽  
Dong Bai Sun ◽  
Song Lin Chen

Composite coatings were prepared using electroless nickel bath containing different concentrations of Al2O3nano-particles. The analyses of coating compositions, carried out by EDS, showed that there is marginal difference between phosphorus contents of NiP and NiP/nano-Al2O3deposits. The structure of the coatings was examined by scanning electron microscopy (SEM), and X-ray diffraction (XRD). It has been found that the co-deposition of nano-Al2O3particles with Ni disturbs the NiP coating’s regular surface structure and increases its surface roughness. DC and AC electrochemical tests were carried out on such coatings in a 3.5wt.% solution of NaCl in order to evaluate their corrosion resistance. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests both showed that, the corrosion resistance of NiP-Al2O3coatings firstly increases and then decreases when Al2O3concentration in electroless bath is increasing, but the corrosion resistance of NiP-Al2O3composite coating is better than that of amorphous NiP coating.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1581
Author(s):  
Rafał Babilas ◽  
Monika Spilka ◽  
Katarzyna Młynarek ◽  
Wojciech Łoński ◽  
Dariusz Łukowiec ◽  
...  

The effect of iron and yttrium additions on glass forming ability and corrosion resistance of Al88Y8-xFe4+x (x = 0, 1, 2 at.%) alloys in the form of ingots and melt-spun ribbons was investigated. The crystalline multiphase structure of ingots and amorphous-crystalline structure of ribbons were examined by a number of analytical techniques including X-ray diffraction, Mössbauer spectroscopy, and transmission electron microscopy. It was confirmed that the higher Fe additions contributed to formation of amorphous structures. The impact of chemical composition and structure of alloys on their corrosion resistance was characterized by electrochemical tests in 3.5% NaCl solution at 25 °C. The identification of the mechanism of chemical reactions taking place during polarization test along with the morphology and internal structure of the surface oxide films generated was performed. It was revealed that the best corrosion resistance was achieved for the Al88Y7Fe5 alloy in the form of ribbon, which exhibited the lowest corrosion current density (jcorr = 0.09 μA/cm2) and the highest polarization resistance (Rp = 96.7 kΩ∙cm2).


2012 ◽  
Vol 19 (03) ◽  
pp. 1250025 ◽  
Author(s):  
JOTHI SUDAGAR ◽  
RUAN DEWEN ◽  
YAQIN LIANG ◽  
RASU ELANSEZHIAN ◽  
JIANSHE LIAN

Influence of surfactants on the corrosion properties of chromium-free electroless nickel deposit were investigated on AZ91D magnesium alloy. The corrosion tests were carried out by immersion test (1 M HCl) and electrochemical polarization test (3.5 wt% NaCl ). The surfactants in the electroless nickel bath increases the corrosion resistance properties of the deposit on the magnesium alloy. In addition, smoothness and amorphous plus nano-crystalline phase were increased and accounted for the significant corrosion resistance. As a consequence, the corrosion potential moved towards the positive direction and the corrosion current density decreased. The immersion tests also provided the same trend as that of electrochemical polarization test. On the whole, the study concluded that corrosion resistance was enhanced by including a surfactant in the electroless deposits on magnesium alloy.


2014 ◽  
Vol 1053 ◽  
pp. 421-428
Author(s):  
Ting Yi Chen ◽  
Ye Qi Fu ◽  
Wen Lu ◽  
Wen Fang Li

A new passivation process has been developed for producing a chrome-free and coloured conversion coating on aluminium alloy AA6063 with K2ZrF6. The conversion coating obtained has a dark film, which enables visual assessment of the coating development and coating quality during processing. The colouring effect is a significant advantage over the zirconium based conversion coatings currently used in the industry, which are largely colourless. The new treatment process is simple and allows a uniform coating to be formed within a few minutes. The composition and the surface morphology of the coatings were characterized. The corrosion resistance of the coated samples was evaluated by electrochemical tests. Through electrochemical analysis, corrosion current of the coatings is low, it has excellent corrosion resistance; SEM, EDS and XRD are used to analyze the process coating.


2011 ◽  
Vol 287-290 ◽  
pp. 1970-1975
Author(s):  
Xin Yu Ye ◽  
Min Fang Chen ◽  
De Bao Liu ◽  
Meng Yang ◽  
Jun Wei

In order to improve the corrosion resistance, the samples made of Mg-Zn-Zr alloy were immersed in 20% or 40% hydrofluoric acid (HF) aqueous solutions for different intervals to prepare magnesium fluoride (MgF2) coating on the surface. By comparing the surface morphologies, the samples immersed in 20% HF solution for 6 h on which fine particles in nanoscale covered was selected for the further study. Immersion and electrochemical tests showed that the dense MgF2 coating would improve the corrosion resistance of Mg-Zn-Zr alloy. The corrosion current density (icorr) decreased from 2.10 μA·cm-2 to 0.05 μA·cm-2. The influence of HF treatment on the cytocompatibility was evaluated in vitro. There were significant differences in the cell number between the naked and coated samples after culturing for 3 and 5 days (p<0.05). All the results demonstrate that HF treatment is a promising approach to improve the corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy used as intravascular stents.


2010 ◽  
Vol 160-162 ◽  
pp. 1464-1468
Author(s):  
Feng Hou ◽  
Hong Xu ◽  
Yu Lin Dai ◽  
Zhi Yan Yao ◽  
Cao Yan

Over the last ten years, sulfuric acid dewpoint corrosion has become a more important concern in refinery furnaces since sulfur levels in fuels have increased. Electroless nickel phosphorous coating is one of the most widely used industrial coatings owing to its good corrosion resistance in many highly corrosive environments. In this work, electroless Ni-P-SiO2 composite coatings were prepared on AISI 1020 carbon steel. And the corrosion behaviors of Ni-P-SiO2, Ni-P coatings and carbon steel substrate were evaluated by immersion, electrochemical tests in 5%wt sulfuric acid solution, and dewpoint corrosion tests in simulated furnace flue gas. The experimental results indicated that corrosion resistance properties of Ni-P-SiO2 coating was best, followed by Ni-P coating and carbon steel was worst.


Author(s):  
LiJie Zhang ◽  
Hong Yan ◽  
YongCheng Zou ◽  
BaoBiao Yu ◽  
Zhi Hu

Abstract The effect of adding cerium on the microstructure and acid rain corrosion resistance of the AlSi11Cu3 alloy was investigated by means of optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The AlSi11Cu3 alloy was doped with varying stoichiometries of cerium to generate AlSi11Cu3-xCe, where x = 0, 0.5, 1.0, and 1.5 wt.%. The results show that the α-Al, eutectic Si, and β-Al5FeSi phases in the AlSi11Cu3-1.0Ce alloy are significantly refined. Electrochemical tests demonstrated an increase in the self-corrosion potential value of the AlSi11Cu3-1.0Ce alloy from –670 mV to –628 mV relative to the untreated alloy. In addition, the AlSi11Cu3-1.0Ce alloy has the lowest corrosion current density (8.4 μA × cm–2). Immersion corrosion testing on the AlSi11Cu3-1.0Ce alloy revealed a corrosion rate of 0.71 mg × cm–2 × d–1, constituting a 72% reduction in the corrosion rate compared to the untreated alloy. These results indicate that the AlSi11Cu3-1.0Ce alloy has a high resistance to acid rain corrosion, which is the result of a refinement of the cathode phases.


Sign in / Sign up

Export Citation Format

Share Document