scholarly journals Field comparison of shallow P‐wave seismic sources near Houston, Texas

Geophysics ◽  
1994 ◽  
Vol 59 (11) ◽  
pp. 1713-1728 ◽  
Author(s):  
Richard D. Miller ◽  
Susan E. Pullan ◽  
Don W. Steeples ◽  
James A. Hunter

A shallow P‐wave seismic source comparison was conducted at a site near Houston, Texas where the depth to the water table was approximately 7 m, and near‐surface materials consisted of clays, sands, and gravels. Data from twelve different sources during this November 1991 comparison are displayed and analyzed. Reflection events are interpretable at about 40 ms on some 220-Hz analog low‐cut filtered field files, and at 60 ms on most 110‐ and 220-Hz analog low‐cut filtered field files. Calculations and local water well information suggest the 40-ms event is from the top of the water table. Subsurface explosive sources seem to possess the highest dominant frequency, broadest bandwidth, and recorded amplitudes and, therefore, have the greatest resolution potential at this site. Our previous work and that of our colleagues suggests that, given a specific set of site characteristics, any source could dominate the comparison categories addressed here.

Geophysics ◽  
1992 ◽  
Vol 57 (5) ◽  
pp. 693-709 ◽  
Author(s):  
Richard D. Miller ◽  
Susan E. Pullan ◽  
Don W. Steeples ◽  
James A. Hunter

Data from a shallow seismic‐source comparison test conducted in an area with a water‐table depth in excess of 30 m and near‐surface velocities less than 330 m/s were acquired from 13 different sources at a single site near Chino, California. The sources included sledgehammer, explosives, weight drop, projectile impacts, and various buffalo guns. A possible reflecting event can be interpreted at about 70 ms. At this particular test site, the lowly sledgehammer is among the best sources to provide data to see the possible reflection. Our previous work and that of our colleagues suggests that any source could dominate the comparison categories addressed here, given the appropriate set of site characteristics.


2019 ◽  
Author(s):  
Snježana Markušić ◽  
Davor Stanko ◽  
Tvrtko Korbar ◽  
Ivica Sović

Abstract. Seismic-induced ground motion at a site is generally influenced by seismic source, propagation path and local site conditions. Over the last several decades, researchers have consistently asserted that for near site attenuation, the spectral parameter kappa is subject primarily to site conditions. In this research we estimated parameter kappa based on the acceleration amplitude spectrum of shear waves, from the selected recordings of local earthquakes from seismological stations situated in the western part of Croatia from the slope of the high-frequency part. The spatial distribution of individual kappa values is compared with the azimuthal distribution of earthquake epicentres, with Vs30 values and the published coda-Q values for each station, as well as with isoseismal maps for several stronger events in the investigated area, along with the geological features. The dextral shift of crustal segments and frontal thrust of the External Dinarides along the Kvarner fault zone has probably had an impact on the geometry of the kappa parameter contour lines. These results are important for gaining further insight into the attenuation of near-surface crust layers in the Northwestern External Dinarides and the associated Adriatic foreland, as well as in similar geotectonic settings.


Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1715-1726 ◽  
Author(s):  
Yih Jeng

A shallow seismic reflection experiment was performed on a construction site to determine the feasibility of using reflection seismology to investigate the shallow structure in a weathered sand‐gravel interlayered zone that was known to be a poor transmission of high‐frequency seismic energy. Field‐recording parameters were designed to fit the limited space of the urban construction survey area. A 7 kg sledgehammer was used to generate P‐waves and SH‐waves. Single 100 Hz geophones were deployed at 1.0 m/0.5 m group intervals, and 200/100-Hz low‐cut filters were applied prior to A to D conversion to attenuate ground roll. For SH‐wave reflections, single 14 Hz geophones and a 70-Hz low‐cut filter on the seismograph were used. The dominant frequency bands ranged from 33 to 275 Hz and were centered around 110 Hz for P‐waves. Lower dominant frequency bands 20 to 160 Hz with a dominant frequency of around 85 Hz were observed on SH‐wave records. Four seismic lines, three P‐wave recordings and one SH‐wave recording, using different sets of recording parameters and an appropriate seismic‐wave generation method produced reflections from varying depth ranges and at different resolutions. The results show that the techniques employed in this experiment may resolve the structure of a site with poor reflection quality. An f-k dip filtering and deconvolution were necessary in processing the reflection data to eliminate various types of unwanted energy. The seismic interpretations in this study were verified by drilling and by a nearby excavation.


Geophysics ◽  
1986 ◽  
Vol 51 (11) ◽  
pp. 2067-2092 ◽  
Author(s):  
R. D. Miller ◽  
S. E. Pullan ◽  
J. S. Waldner ◽  
F. P. Haeni

Choosing a seismic source for a shallow reflection survey can be the most pivotal decision for the engineering geophysicist. The intent of this paper is to present data that will assist in selection of a shallow seismic source best meeting the goals within the constraints of specific projects, particularly in areas where the water table is near the surface. The data were collected (and displayed as seismograms and amplitude spectra) for 15 different shallow seismic sources in October, 1985, at a single site in New Jersey; they show the different characteristics of each source. Considering the almost three orders of magnitude difference in total source energy between the largest and smallest source, we chose a display format that presented the data as objectively as possible, while still allowing direct source‐to‐source comparisons. Two strong reflections at about 100 and 130 ms probably mark the top and bottom of a clay unit 80 m below the surface at this site. Our previous work and that of our colleagues suggests that, given a specific set of site characteristics, any source could dominate the comparison categories addressed here.


Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 741-748 ◽  
Author(s):  
D. J. Gendzwill ◽  
Randy Brehm

High‐resolution seismic reflections underground in a deep potash mine in Canada have been collected using a hammer for a seismic source, 50 Hz geophones, and a digital, stacking seismograph with 0.1 ms sampling rate. Data were obtained with 12‐fold redundancy in both downward and upward directions from the mine openings. Reflections with dominant frequency up to 1100 Hz were observed between 20 and 80 ms time. Both single geophones and arrays of geophones were tested. For the roof profiles, geophones were bolted to the rock with specially designed base plates. Computer processing used deconvolution filters to remove spurious high‐frequency resonance of the geophones. Constant velocity for salt was used for all static corrections and normal moveout corrections. An unexpected result was the appearance of near‐vertical reflected waves that traveled both ways at the shear‐wave speed. These are thought to have been caused by near‐surface fractures or near‐surface anisotropy of the rock. Synthetic seismograms calculated from logs of a nearby well agree with the seismic reflection data. Normal stratification of the flat‐bedded sedimentary rocks and a small structure were mapped by the seismic data, confirming the vertical extent of geological anomalies observed at the mine level.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. B339-B353 ◽  
Author(s):  
Bojan Brodic ◽  
Alireza Malehmir ◽  
André Pugin ◽  
Georgiana Maries

We deployed a newly developed 3C microelectromechanical system-based seismic land streamer over porous glacial sediments to delineate water table and bedrock in Southwestern Finland. The seismic source used was a 500 kg vertical impact drop hammer. We analyzed the SH-wave component and interpreted it together with previously analyzed P-wave component data. In addition to this, we examined the land streamer’s potential for multichannel analysis of surface waves and delineated the site’s stratigraphy with surface-wave-derived S-wave velocities and [Formula: see text] ratios along the entire profile. These S-wave velocities and [Formula: see text] ratios complement the interpretation conducted previously on P-wave stacked section. Peculiarly, although the seismic source used is of a vertical-type nature, the data inspection indicated clear bedrock reflection on the horizontal components, particularly the transverse component. This observation led us to scrutinize the horizontal component data through side-by-side inspection of the shot records of all the three components and particle motion analysis to confirm the S-wave nature of the reflection. Using the apparent moveout velocity of the reflection, as well as the known depth to bedrock based on drilling, we used finite-difference synthetic modeling to further verify its nature. Compared with the P-wave seismic section, bedrock is relatively well delineated on the transverse component S-wave section. Some structures connected to the kettle holes and other stratigraphic units imaged on the P-wave results were also notable on the S-wave section, and particularly on the surface-wave derived S-wave velocity model and [Formula: see text] ratios. Our results indicate that P-, SV-, and SH-wave energy is generated simultaneously at the source location itself. This study demonstrates the potential of 3C seismic for characterization and delineation of the near-surface seismics.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. D169-D179 ◽  
Author(s):  
Zijian Zhang ◽  
De-hua Han ◽  
Daniel R. McConnell

Hydrate-bearing sands and shallow nodular hydrate are potential energy resources and geohazards, and they both need to be better understood and identified. Therefore, it is useful to develop methodologies for modeling and simulating elastic constants of these hydrate-bearing sediments. A gas-hydrate rock-physics model based on the effective medium theory was successfully applied to dry rock, water-saturated rock, and hydrate-bearing rock. The model was used to investigate the seismic interpretation capability of hydrate-bearing sediments in the Gulf of Mexico by computing elastic constants, also known as seismic attributes, in terms of seismic interpretation, including the normal incident reflectivity (NI), Poisson’s ratio (PR), P-wave velocity ([Formula: see text]), S-wave velocity ([Formula: see text]), and density. The study of the model was concerned with the formation of gas hydrate, and, therefore, hydrate-bearing sediments were divided into hydrate-bearing sands, hydrate-bearing sands with free gas in the pore space, and shallow nodular hydrate. Although relations of hydrate saturation versus [Formula: see text] and [Formula: see text] are different between structures I and II gas hydrates, highly concentrated hydrate-bearing sands may be interpreted on poststack seismic amplitude sections because of the high NI present. The computations of elastic constant implied that hydrate-bearing sands with free gas could be detected with the crossplot of NI and PR from prestack amplitude analysis, and density may be a good hydrate indicator for shallow nodular hydrate, if it can be accurately estimated by seismic methods.


1990 ◽  
Vol 80 (6A) ◽  
pp. 1677-1695 ◽  
Author(s):  
Ik Bum Kang ◽  
George A. McMechan

Abstract Full wave field modeling of wide-aperture data is performed with a pseudospectral implementation of the elastic wave equation. This approach naturally produces three-component stress and two-component particle displacement, velocity, and acceleration seismograms for compressional, shear, and Rayleigh waves. It also has distinct advantages in terms of computational requirements over finite-differencing when data from large-scale structures are to be modeled at high frequencies. The algorithm is applied to iterative two-dimensional modeling of seismograms from a survey performed in 1985 by The University of Texas at El Paso and The University of Texas at Dallas across the Anadarko basin and the Wichita Mountains in southwestern Oklahoma. The results provide an independent look at details of near-surface structure and reflector configurations. Near-surface (<3 km deep) structure and scattering effects account for a large percentage (>70 per cent) of the energy in the observed seismograms. The interpretation of the data is consistent with the results of previous studies of these data, but provides considerably more detail. Overall, the P-wave velocities in the Wichita Uplift are more typical of the middle crust than the upper crust (5.3 to 7.1 km/sec). At the surface, the uplift is either exposed as weathered outcrop (5.0 to 5.3 km/sec) or is overlain with sediments of up to 0.4 km in thickness, ranging in velocity from 2.7 to 3.4 km/sec, generally increasing with depth. The core of the uplift is relatively seismically transparent. A very clear, coherent reflection is observed from the Mountain View fault, which dips at ≈40° to the southwest, to at least 12 km depth. Velocities in the Anadarko Basin are typical of sedimentary basins; there is a general increase from ≈2.7 km/sec at the surface to ≈5.9 km/sec at ≈16 km depth, with discontinuous reflections at depths of ≈8, 10, 12, and 16 km.


2022 ◽  
Vol 41 (1) ◽  
pp. 40-46
Author(s):  
Öz Yilmaz ◽  
Kai Gao ◽  
Milos Delic ◽  
Jianghai Xia ◽  
Lianjie Huang ◽  
...  

We evaluate the performance of traveltime tomography and full-wave inversion (FWI) for near-surface modeling using the data from a shallow seismic field experiment. Eight boreholes up to 20-m depth have been drilled along the seismic line traverse to verify the accuracy of the P-wave velocity-depth model estimated by seismic inversion. The velocity-depth model of the soil column estimated by traveltime tomography is in good agreement with the borehole data. We used the traveltime tomography model as an initial model and performed FWI. Full-wave acoustic and elastic inversions, however, have failed to converge to a velocity-depth model that desirably should be a high-resolution version of the model estimated by traveltime tomography. Moreover, there are significant discrepancies between the estimated models and the borehole data. It is understandable why full-wave acoustic inversion would fail — land seismic data inherently are elastic wavefields. The question is: Why does full-wave elastic inversion also fail? The strategy to prevent full-wave elastic inversion of vertical-component geophone data trapped in a local minimum that results in a physically implausible near-surface model may be cascaded inversion. Specifically, we perform traveltime tomography to estimate a P-wave velocity-depth model for the near-surface and Rayleigh-wave inversion to estimate an S-wave velocity-depth model for the near-surface, then use the resulting pairs of models as the initial models for the subsequent full-wave elastic inversion. Nonetheless, as demonstrated by the field data example here, the elastic-wave inversion yields a near-surface solution that still is not in agreement with the borehole data. Here, we investigate the limitations of FWI applied to land seismic data for near-surface modeling.


1969 ◽  
Vol 59 (1) ◽  
pp. 73-100
Author(s):  
Larry Gedney ◽  
Eduard Berg

Abstract A series of moderately severe earthquakes occurred in the vicinity of Fairbanks, Alaska, on the morning of June 21, 1967. During the following months, many thousands of aftershocks were recorded in order to outline the aftershock zone and to resolve the focal mechanism and its relation to the regional tectonic system. No fault is visible at the surface in this area. Foci were found to occupy a relatively small volume in the shape of an ablate cylinder tilted about 30° from the vertical. The center of the zone lay about 12 kilometers southeast of Fairbanks. Focal depths ranged from near-surface to 25 kilometers, although most were in the range 9-16 km. In the course of the investigation, it was found that the Jeffreys and Bullen velocity of 5.56 km/sec for the P wave in the upper crustal layer is very near the true value for this arec, and that the use of 1.69 for the Vp/Vs ratio gives good results in most cases. The proposed faulting mechanism involves nearly equal components of right-lateral strike slip, and normal faulting with northeast side downthrown on a system of sub-parallel faults striking N40°W. The fault surface appears to be curved—dipping from near vertical close to the surface to less steep northeast dips at greater depths. The relationship of this fault system with the grosser aspects of regional tectonism is not clear.


Sign in / Sign up

Export Citation Format

Share Document