Mapping water-abundant zones using transient electromagnetic and seismic methods when tunneling through fractured granite in the Qinling Mountains, China

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. B147-B159
Author(s):  
Bin Liu ◽  
Kerui Fan ◽  
Lichao Nie ◽  
Xiu Li ◽  
Fusheng Liu ◽  
...  

Severe water inrush currently halts the excavation of the Qinling Water Transportation Tunnel and has even stopped tunneling. Based on the geologic conditions of the construction area, the source of water inrush is abundant groundwater in fractured granite. To accurately predict water inrush, we must know the location, geometry, and boundary information of water-abundant zones before excavation. We have developed a field study of integrated seismic and transient electromagnetic (TEM) applications to map the water-abundant zones ahead of the tunnel face. Before the in-tunnel survey, numerical experiments based on excavation and drilling records verified the feasibility of our scheme. To reveal the fractured zones that may be filled with groundwater, an equitraveltime plane algorithm was used in the seismic data processing. Then, the TEM apparent resistivity was calculated to investigate the water-bearing condition of the fractured zones. To detect the water-abundant zone boundaries, we conducted migration imaging of the TEM pseudowavefield that was extracted from the measured TEM signals. A correlation stacking process to extract the TEM pseudowavefield was used to mitigate the ill-posed effect in the inverse wavefield transformation and obtain boundary information of the water-abundant zones. As expected, the results revealed the depth and geometry of the front and rear boundaries of two water-abundant zones 30 m ahead of the tunnel face, which is consistent with drilling and excavation records after the survey. The results of our case study indicate that the integration of seismic imaging, apparent resistivity imaging, and TEM pseudowavefield migration is an efficient and cost-effective method to provide the location, geometry, and boundary information of water-abundant zones.

Geophysics ◽  
1986 ◽  
Vol 51 (7) ◽  
pp. 1462-1471 ◽  
Author(s):  
Brian R. Spies ◽  
Dwight E. Eggers

Problems and misunderstandings arise with the concept of apparent resistivity when the analogy between an apparent resistivity computed from geophysical observations and the true resistivity structure of the subsurface is drawn too tightly. Several definitions of apparent resistivity are available for use in electromagnetic methods; however, those most commonly used do not always exhibit the best behavior. Many of the features of the apparent resistivity curve which have been interpreted as physically significant with one definition disappear when alternative definitions are used. It is misleading to compare the detection or resolution capabilities of different field systems or configurations solely on the basis of the apparent resistivity curve. For the in‐loop transient electromagnetic (TEM) method, apparent resistivity computed from the magnetic field response displays much better behavior than that computed from the induced voltage response. A comparison of “exact” and “asymptotic” formulas for the TEM method reveals that automated schemes for distinguishing early‐time and late‐time branches are at best tenuous, and those schemes are doomed to failure for a certain class of resistivity structures (e.g., the loop size is large compared to the layer thickness). For the magnetotelluric (MT) method, apparent resistivity curves defined from the real part of the impedance exhibit much better behavior than curves based on the conventional definition that uses the magnitude of the impedance. Results of using this new definition have characteristics similar to apparent resistivity obtained from time‐domain processing.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2019 ◽  
Vol 2 (1) ◽  
pp. 113-124
Author(s):  
Etzar Gómez ◽  
Viktor Broman ◽  
Torleif Dahlin ◽  
Gerhard Barmen ◽  
Jan-Erik Rosberg

Abstract Resistivity data constitute the largest part of the available information to assess the hydrogeological characteristics of the aquifer system near Oruro, in the central part of the Bolivian Altiplano. Two aquifers are part of this system; top unconsolidated sediments storing fresh water in their granular voids, overlying fractured hard rock formations where saline water was detected in connection to some faults. This study proposes an indirect and cost-effective way to estimate aquifer hydraulic properties for the groundwater management in the region. Hydraulic conductivity and transmissivity in the top aquifer were estimated using an empirical linear relationship between hydraulic conductivity and resistivity. This latter parameter, as well as the aquifer thickness, were obtained from the inverted models corresponding to the geoelectrical tests performed in the study area (electrical resistivity tomography, transient electromagnetic soundings and vertical electrical soundings). The highest estimated transmissivity values are ∼4.0 × 10−2 m2/s located in the centre of the study area, the lowest values are ∼3.4 × 10−3 m2/s, located around thermal intrusions to the south and where the top of the bedrock is shallow (∼20 m depth) to the west. The methodology presented in this study makes wider use of resistivity measurements to identify promising groundwater production sites.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2153-2157
Author(s):  
Yong Jun Li ◽  
Xiao Ming Li ◽  
Ting Chen

Transient electromagnetic method is one of the geophysical prospecting methods to detect mine goaf. The paper analyzes the unique electrical characteristics of the stratum containing goaf. TEM inverts the apparent resistivity and delineates the mine goaf and determines water content by observing the pure secondary field. The method is sensitive to geologic bodies of low resistivity and has higher resolution. The paper takes some one mine in Shanxi as example to prove the practicability and effectiveness of TEM in production. It has certain reference significance in detecting mine goaf.


2018 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Shuai Chang ◽  
Zhen Yang ◽  
Changfang Guo ◽  
Zhanyuan Ma ◽  
Xiang Wu

The hydrogeological conditions of coal mines in China are quite complex, and water inrush accidents occur frequently with disastrous consequences during coal extraction. Among them, the risk of coal mining under a river is the highest due to the high water transmissivity and lateral charge capacity of the unconfined aquifer under the river. The danger of mining under a river requires the accurate determination of the developmental mechanisms of the water flowing fractured zone (WFFZ) and the water flow mechanisms influenced by the specific geological conditions of a coal mine. This paper first used the transient electromagnetic (TEM) method to monitor the development of the WFFZ and the water flow mechanisms following the mining of a longwall face under a river. The TEM survey results showed that the middle Jurassic coarse sandstone aquifer and the Klzh unconfined aquifer were the main aquifers of the 8101 longwall panel, and the WFFZ reached the aquifers during the mining process. Due to the limited water reserves in the dry season, the downward flowing water mainly came from the lateral recharge in the aquifer. The water inrush mechanisms of the 8101 longwall panel in Selian No.1 Coal mine were analyzed based on the water flow mechanisms of the aquifer and the numerical simulation results. This provides theoretical and technical guidance to enact safety measures for mining beneath aquifers.


2020 ◽  
Author(s):  
Jifeng Zhang ◽  
Bing Feng ◽  
Dong Li

<p>An artificial neural network, which is an important part of artificial intelligence, has been widely used to many fields such as information processing, automation and economy, and geophysical data processing as one of the efficient tools. However, the application in geophysical electromagnetic method is still relatively few. In this paper, BP neural network was combined with airborne transient electromagnetic method for imaging subsurface geological structures.</p><p>We developed an artificial neural network code to map the distribution of geologic conductivity in the subsurface for the airborne transient electromagnetic method. It avoids complex derivation of electromagnetic field formula and only requires input and transfer functions to obtain the quasi-resistivity image section. First, training sample set, which is airborne transient electromagnetic response of homogeneous half-space models with the different resistivity, is formed and network model parameters include the flight altitude and the time constant, which were taken as input variables of the network, and pseudo-resistivity are taken as output variables. Then, a double hidden layer BP neural network is established in accordance with the mapping relationship between quasi-resistivity and airborne transient electromagnetic response. By analyzing mean square error curve, the training termination criterion of BP neural network is presented. Next, the trained BP neural network is used to interpret the airborne transient electromagnetic responses of various typical layered geo-electric models, and it is compared with those of the all-time apparent resistivity algorithm. After a lot of tests, reasonable BP neural network parameters were selected, and the mapping from airborne TEM quasi-resistivity was realized. The results show that the resistivity imaging from BP neural network approach is much closer to the true resistivity of model, and the response to anomalous bodies is better than that of all-time apparent resistivity numerical method. Finally, this imaging technique was use to process the field data acquired by the airborne transient method from Huayangchuan area. Quasi-resistivity depth section calculated by BP neural network and all-time apparent resistivity is in good agreement with the actual geological situation, which further verifies the effectiveness and practicability of this algorithm.</p>


Author(s):  
He Li ◽  
Wenhan Li ◽  
Zhipeng Qi ◽  
Xiu Li ◽  
Kailiang Lu

Abstract The high-performance transient electromagnetic method (TEM) excitation source is a new type of source that has been proposed for urban underground space exploration. This source is composed of two trapezoid plates. To ensure that the radiation field was focused in a certain direction, the two trapezoid plate-shaped antennas were arranged into a horn shape. This new source is characterised by high power, directional excitation and high resolution. The corresponding multi-component global apparent resistivity definition method is established for a high-performance transient electromagnetic excitation source. This method is studied using the inverse function theorem. Then, the monotonic relationship between components of the electromagnetic field and resistivity is analysed. For the fields that satisfy the monotonic relationship with half-space resistivity, the apparent resistivity can be calculated correctly to ignore the time period and location in the space. This means that this definition method can eliminate the limitation of early and late times, and the near and far zones. The apparent resistivity calculation results of the theoretical layered model reveal that global apparent resistivity curves show a regular change, which smoothly and comprehensively reflects the change of electrical information in the model. The experimental results of the 3D model show that the five-layer low-resistivity anomaly contained in the urban underground space designed in this paper exhibits an obvious response in the global apparent resistivity profile. It is concluded that a high-performance TEM excitation source possesses a high resolution, clearly reflecting all of the anomalies of a complex urban underground space model.


Sign in / Sign up

Export Citation Format

Share Document