Mass-constrained basin basement mapping

Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. G13-G21
Author(s):  
Carlos A. Mendonça ◽  
Carlos A. M. Chaves

The irregular interface model setting side by side two dense homogeneous media has found many applications in gravity-data exploration such as for petroleum and gas in sedimentary basins, groundwater resources in buried paleochannels, characterization of abandoned landfills, and variable regolith-depth mapping. Despite its simplicity and wide range of applicability, the determination of the interface position from inverting surface gravity data configures an ill-posed problem requiring specialized regularizing procedures to produce reliable results. Common approaches to obtain stable and reliable solutions require a judicious choice of regularizing functionals, each of them able to convey a desired geologic attribute that the unknown interface is expected to feature. In assuming a style that the unknown interface may have, a mathematical procedure is elected to convey such an attribute when the interface is mapped from gravity data inversion. We have developed a different approach to the interface mapping problem by imposing a common constraint that all model solutions must have, meanwhile preventing oscillations for the interface to be mapped. As a constraint that the solutions must have, we fix the volume or the cross section for 2D structures that the anomalous density structure has. This volume (or 2D cross section) is determined by applying the mass excess theorem to the measured gravity data and assuming as known the density contrast caused by the two media paired by the interface. We find that this simple formulation for the interface-mapping problem is effective in imaging a variety of basin styles without introducing specific information about the interface attributes. Our technique is applied to invert previously published gravity data in cases with good drillhole control or with a known interface.

Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


2021 ◽  
Vol 11 (5) ◽  
pp. 62
Author(s):  
Jialin Fan ◽  
Andrew P Smith

(1) Psychology must play an important role in the prevention and management of the COVID-19 pandemic. The aim of the present study was to examine associations between the perceptions of information overload and wellbeing in China during the initial phase of COVID-19. (2) Methods: The present research involved a cross-sectional online survey, which controlled for established predictors of wellbeing and the perception of general (not COVID-19-specific) information overload. The setting of the research was China, February 2020. A total of 1349 participants completed an online survey, and the results from 1240 members of the general public who stated that they were uninfected are reported here (55.6% female; 49.4% single; age distribution: 17–25 years: 26%; 26–30 years: 24.3%; 31–40 years: 23.9%; 41–50 years: 16.2%; 51 years+: 9.6%; the most frequent occupations were: 21.5% students; 19.5% teachers; 25.9% office workers; 10.8% managers, plus a few in a wide range of jobs). The outcomes were positive wellbeing (positive affect and life satisfaction) and negative wellbeing (stress, negative affect, anxiety and depression). (3) Results: Regressions were carried out, controlling for established predictors of wellbeing (psychological capital, general information overload, positive and negative coping). Spending time getting information about COVID-19 was associated with more positive wellbeing. In contrast, perceptions of COVID-19 information overload and feeling panic due to COVID-19 were associated with more negative wellbeing. (4) Conclusions: These results have implications for the communication of information about COVID-19 to the general public and form the basis for further research on the topic.


Author(s):  
А.В. ГУКАСЯН ◽  
В.С. КОСАЧЕВ ◽  
Е.П. КОШЕВОЙ

Получено аналитическое решение двумерного слоистого напорного течения в канале шнека, позволяющее моделировать расходно-напорные характеристики прямоугольных каналов шнековых прессов с учетом гидравлического сопротивления формующих устройств и рассчитывать расходно-напорные характеристики экструдеров в широком диапазоне геометрии витков как в поперечном сечении, так и по длине канала. Obtained the analytical solution of two-dimensional layered pressure flow in the screw channel, allow to simulate the flow-dynamic pressure characteristics of rectangular channels screw presses taking into account the hydraulic resistance of the forming device and calculate the mass flow-dynamic pressure characteristics of the extruders in a wide range of the geometry of the coils, as in its cross section and along the length of the channel.


Author(s):  
Susan Thomas ◽  
Tim Ameel

An experimental investigation of water flow in a T-shaped channel with rectangular cross section (20 × 20 mm inlet ID and 20 × 40 mm outlet ID) has been conducted for a Reynolds number Re range of 56 to 422, based on inlet diameter. Dynamical conditions and the T-channel geometry of the current study are applicable to the microscale. This study supports a large body of numerical work, and resolution and the interrogation region are extended beyond previous experimental studies. Laser induced fluorescence (LIF) and particle imaging velocimetry (PIV) are used to characterize flow behaviors over the broad range of Re where realistic T-channels operate. Scalar structures previously unresolved in the literature are presented. Special attention is paid to the unsteady flow regimes that develop at moderate Re, which significantly impact mixing but are not yet well characterized or understood. An unsteady symmetric topology, which develops at higher Re and negatively impacts mixing, is presented, and mechanisms behind the wide range of mixing qualities predicted for this regime are explained. An optimal Re operating range is identified based on multiple experimental trials.


2020 ◽  
Author(s):  
Thijs Dhollander ◽  
Adam Clemente ◽  
Mervyn Singh ◽  
Frederique Boonstra ◽  
Oren Civier ◽  
...  

Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organisation. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "fixel-based analysis" (FBA) framework that implements bespoke solutions to this end, and has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to fixel-based analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of current fixel-based analysis studies (until August 2020), categorised across a broad range of neuroscientific domains, listing key design choices and summarising their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the fixel-based analysis framework, and outline some directions and future opportunities.


Geophysics ◽  
2020 ◽  
pp. 1-45
Author(s):  
Vitaliy Ogarko ◽  
Jérémie Giraud ◽  
Roland Martin ◽  
Mark Jessell

To reduce uncertainties in reconstructed images, geological information must be introduced in a numerically robust and stable way during the geophysical data inversion procedure. In the context of potential (gravity) data inversion, it is important to bound the physical properties by providing probabilistic information on the number of lithologies and ranges of values of possibly existing related rock properties (densities). For this purpose, we introduce a generalization of bounding constraints for geophysical inversion based on the alternating direction method of multipliers (ADMM). The flexibility of the proposed technique enables us to take into account petrophysical information as well as probabilistic geological modeling, when it is available. The algorithm introduces a priori knowledge in terms of physically acceptable bounds of model parameters based on the nature of the modeled lithofacies in the region under study. Instead of introducing only one interval of geologically acceptable values for each parameter representing a set of rock properties, we define sets of disjoint intervals using the available geological information. Different sets of intervals are tested, such as quasi-discrete (or narrow) intervals as well as wider intervals provided by geological information obtained from probabilistic geological modeling. Narrower intervals can be used as soft constraints encouraging quasi-discrete inversions. The algorithm is first applied to a synthetic 2D case for proof-of-concept validation and then to the 3D inversion of gravity data collected in the Yerrida basin (Western Australia). Numerical convergence tests show the robustness and stability of the bound constraints we apply, which is not always trivial for constrained inversions. This technique can be a more reliable uncertainty reduction method as well as an alternative to other petrophysically or geologically constrained inversions based on more classical “clustering” or Gaussian-mixture approaches.


2020 ◽  
Author(s):  
Arcangela Bollino ◽  
Anna Maria Marotta ◽  
Federica Restelli ◽  
Alessandro Regorda ◽  
Roberto Sabadini

<p>Subduction is responsible for surface displacements and deep mass redistribution. This rearrangement generates density anomalies in a wide spectrum of wavelengths which, in turn, causes important anomalies in the Earth's gravity field that are visible as lineaments parallel to the arc-trench systems. In these areas, when the traditional analysis of the deformation and stress fields is combined with the analysis of the perturbation of the gravity field and its slow time variation, new information on the background environment controlling the tectonic loading phase can be disclosed.</p><p>Here we present the results of a comparative analysis between the geodetically retrieved gravitational anomalies, based on the EIGEN-6C4 model, and those predicted by a 2D thermo-chemical mechanical modeling of the Sumatra and Mariana complexes.</p><p>The 2D model accounts for a wide range of parameters, such as the convergence velocity, the shallow dip angle, the different degrees of coupling between the facing plates. The marker in cell technique is used to compositionally differentiate the system. Phase changes in the crust and in the mantle and mantle hydration are also allowed. To be compliant with the geodetic EIGEN-6C4 gravity data, we define a model normal Earth considering the vertical density distribution at the margins of the model domain, where the masses are not perturbed by the subduction process.</p><p>Model predictions are in good agreement with data, both in terms of wavelengths and magnitude of the gravity anomalies measured in the surroundings of the Sumatra and Marina subductions. Furthermore, our modeling supports that the differences in the style of the gravity anomaly observed in the two areas are attributable to the different environments – ocean-ocean or ocean-continental subduction – that drives a significantly different dynamic in the wedge area.</p>


2000 ◽  
Vol 6 (3) ◽  
pp. 158-161 ◽  
Author(s):  
Vaidotas Špalas ◽  
Audronis Kazimieras Kvedaras

In this paper, theoretical analysis of tapered column's bearing capacity is presented. A slender axially loaded column loses stability, when it achieves critical load (1). Critical load for uniform column can be calculated using L. Euler's formula (3). But this formula is only for uniform members. When we have non-uniform member, column's moment of inertia about strong axis (Fig 3) chances according to law (4). A. N. Dinik [4] suggested a differential equation (6) for non-uniform axially loaded member. So the critical load of tapered column can be calculated as for uniform member with additional factor K using (7) formula. Factor Kdepends only on the moments of inertia ratio (5) of column ends. In this paper, critical load of tapered column was calculated using FE program COSMOS/M. A lot of simulation were carried out with a wide range of moments of inertia ratio. From these simulations factor K was calculated (Fig 4 and Table 1) for axially loaded pin-end column. By computer simulation it was determined that factor K for pin-end column can also be used for other types of column support. After determining critical load, column slenderness (10) can be calculated using column's smallest cross-section A 1. Tapered column must satisfy (12) condition. A couple of examples (Table 2) with various moments of inertia ratio was solved. Three calculation methods were used: the author's suggested (Fig 5 curve 1): using [1, 2] method as for uniform member with the smallest column's cross-section geometrical characteristics (Fig 5 curve 2); and using [1, 2] method as for uniform member with average column's cross-section geometrical characteristics (Fig 5 curve 3). From Fig 5 we see that calculation of tapered column using methods for uniform members with average cross-section geometrical characteristics is not safe.


Author(s):  
Martin Monperrus ◽  
Jean-Marc Jézéquel ◽  
Joël Champeau ◽  
Brigitte Hoeltzener

Model-Driven Engineering (MDE) is an approach to software development that uses models as primary artifacts, from which code, documentation and tests are derived. One way of assessing quality assurance in a given domain is to define domain metrics. We show that some of these metrics are supported by models. As text documents, models can be considered from a syntactic point of view i.e., thought of as graphs. We can readily apply graph-based metrics to them, such as the number of nodes, the number of edges or the fan-in/fan-out distributions. However, these metrics cannot leverage the semantic structuring enforced by each specific metamodel to give domain specific information. Contrary to graph-based metrics, more specific metrics do exist for given domains (such as LOC for programs), but they lack genericity. Our contribution is to propose one metric, called s, that is generic over metamodels and allows the easy specification of an open-ended wide range of model metrics.


Sign in / Sign up

Export Citation Format

Share Document