Numerical simulation of in-pipe particle transportation in CO2 foam

2017 ◽  
Vol 5 (2) ◽  
pp. SF243-SF249
Author(s):  
Cheng Huang ◽  
Xiao Sun ◽  
Jinqiao Wu

Proppant-carrying foam fracturing fluids have complex rheological and transportation properties. Current studies on these fluids often focus on experimental phenomena. However, due to the limitation of experimental research, only macroscopic properties, such as the critical settling velocity, can be obtained. Transportation mechanisms and volume fraction distributions are poorly understood as well. In our study, the liquid-solid drag coefficient is corrected, and the mathematical physical model of non-Newtonian fluids of the particle-foam multiple phase is established by using a two-phase model. Proppant settling and transport properties in foam fracturing fluids are numerically studied, particle distribution on pipe cross section is obtained at various conditions, and a criterion for full development of fluid flow in pipe is set. We also find that when the Reynolds number (Re) is less than 190, the critical point of full development of flow increases with Re, whereas when Re is greater than 190, the critical point of full development decreases exponentially with the increasing of Re before stabilizing at approximately 45.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1543
Author(s):  
Luka Sturtewagen ◽  
Erik van der Linden

The ability to separate enzymes, nucleic acids, cells, and viruses is an important asset in life sciences. This can be realised by using their spontaneous asymmetric partitioning over two macromolecular aqueous phases in equilibrium with one another. Such phases can already form while mixing two different types of macromolecules in water. We investigate the effect of polydispersity of the macromolecules on the two-phase formation. We study theoretically the phase behavior of a model polydisperse system: an asymmetric binary mixture of hard spheres, of which the smaller component is monodisperse and the larger component is polydisperse. The interactions are modelled in terms of the second virial coefficient and are assumed to be additive hard sphere interactions. The polydisperse component is subdivided into sub-components and has an average size ten times the size of the monodisperse component. We calculate the theoretical liquid–liquid phase separation boundary (the binodal), the critical point, and the spinodal. We vary the distribution of the polydisperse component in terms of skewness, modality, polydispersity, and number of sub-components. We compare the phase behavior of the polydisperse mixtures with their concomittant monodisperse mixtures. We find that the largest species in the larger (polydisperse) component causes the largest shift in the position of the phase boundary, critical point, and spinodal compared to the binary monodisperse binary mixtures. The polydisperse component also shows fractionation. The smaller species of the polydisperse component favor the phase enriched in the smaller component. This phase also has a higher-volume fraction compared to the monodisperse mixture.


2018 ◽  
Vol 857 ◽  
pp. 270-290 ◽  
Author(s):  
Josef Hasslberger ◽  
Markus Klein ◽  
Nilanjan Chakraborty

This paper presents a detailed investigation of flow topologies in bubble-induced two-phase turbulence. Two freely moving and deforming air bubbles that have been suspended in liquid water under counterflow conditions have been considered for this analysis. The direct numerical simulation data considered here are based on the one-fluid formulation of the two-phase flow governing equations. To study the development of coherent structures, a local flow topology analysis is performed. Using the invariants of the velocity gradient tensor, all possible small-scale flow structures can be categorized into two nodal and two focal topologies for incompressible turbulent flows. The volume fraction of focal topologies in the gaseous phase is consistently higher than in the surrounding liquid phase. This observation has been argued to be linked to a strong vorticity production at the regions of simultaneous high fluid velocity and high interface curvature. Depending on the regime (steady/laminar or unsteady/turbulent), additional effects related to the density and viscosity jump at the interface influence the behaviour. The analysis also points to a specific term of the vorticity transport equation as being responsible for the induction of vortical motion at the interface. Besides the known mechanisms, this term, related to surface tension and gradients of interface curvature, represents another potential source of turbulence production that lends itself to further investigation.


2019 ◽  
Vol 33 (24) ◽  
pp. 1950279
Author(s):  
Xinhua Song ◽  
Xiaojie Li ◽  
Yang Wang ◽  
Honghao Yan

In this paper, a computational fluid dynamics–discrete element method (CFD–DEM) coupling method is established to simulate the starch granule injection by coupling CFD and DEM. Then a gas–solid two-phase pulsed jet system is designed to capture the flow field trajectory of particle injection (colored starch with a mean diameter of 10.67 [Formula: see text]m), and the image is processed by color moment and histogram. Finally, the simulation results are compared with the experimental results, and the following conclusions are drawn. The numerical simulation results show that with the increase of injection pressure, the injection height increases gradually. When the injection pressure reaches above 0.4 MPa, the increase of injection height decreases. The experimental images show that the larger the pressure (i.e., the greater the initial velocity), the faster the velocity of particle distribution in the space, and the injection heights with the injection pressures of 0.4 MPa and 0.5 MPa are close, which is consistent with the result from the FLUENT numerical simulation based on CFD–DEM.


2018 ◽  
Vol 8 (1) ◽  
pp. 322-328
Author(s):  
Moloshnyi Oleksandr ◽  
Szulc Przemyslaw

Abstract The paper concerns the analysis of the cavitation processes in the flow passages of the radial labyrinth pump. The object of the analysis contains the active (moving) and the passive (stationary) discs with straight channels trajectory and semi-circular cross-section. The conversion of the mechanical energy into hydraulic based on the exchange of the momentum between the liquid remaining in the moving and the stationary areas of the discs as well as on the centrifugal increase of the moment of momentum. The analysis of the cavitation processes was realized by the experimental research and the numerical simulation. In the article, the comparison of the cavitation characteristics was carried out. The numerical simulation had given similar results to the experimental one, the process of the cavitation was visualized. Furthermore, numerical investigations helped to describe the cavitation development. The results of the numerical research such as the distributions of the velocity, pressure and vapor volume fraction in the passages were presented. At first, cavitation starts on the back side and on the top of the wall between channels of the active disc. Further, the cavitation areas are growing along the axis of the channels. Eventually, they separation was observed and vortices of the vapour-gas mixture in the middle of the channels were formed. This phenomenon is so-called super cavitation vortices.


Author(s):  
Jian-Hong Liu ◽  
Fu-Min Shang ◽  
Nikolay Efimov

Abstract Numerical simulation was performed to establishing a two-dimensional pulsating heat pipe model, to investigate the flow and heat transfer characteristics in the pulsating heat pipe by using the Mixture and Euler models, which were unsteady models of vapor-liquid two-phase, based on the control-volume numerical procedure utilizing the semi-implicit method. Through comparing and analyzing the volume fraction and velocity magnitude of gas phase to decide which model was more suitable for numerical simulation of the pulsating heat pipe in heat and mass transfer research. It was showed there had gas phase forming in stable circulation flow in the heating section, the adiabatic section using the Mixture and Euler models respectively, and they were all in a fluctuating state at 10s, besides, the pulsating heat pipe had been starting up at 1s and stabilizing at 5s, it was all found that small bubbles in the heat pipe coalescing into large bubbles and gradually forming into liquid plugs and gas columns from the contours of volume fraction of the gas phase; through comparing the contours of gas phase velocity, it could be seen that there had further stably oscillating flow and relatively stabler gas-liquid two-phase running speed in the pulsating heat pipe used the Mixture model, the result was consistent with the conclusion of the paper[11] extremely, from this it could conclude that the Mixture model could be better simulate the vaporization-condensation process in the pulsating heat pipe, which could provide an effective theoretical support for further understanding and studying the phase change heat and mass transfer mechanism of the pulsating heat pipe.


Author(s):  
Nariman Ashrafi ◽  
Mohammad Reza Ansari ◽  
Armin Chegini ◽  
Ali Sadeghi

In this article, two-phase slug regime in a duct with rectangular cross-section is investigated numerically, using the volume of fluid (VOF) method. Equations of mass, momentum and advection of volume fraction are solved accompanying k-∈ realizable turbulence equations. To ensure the creditability, numerical results have been compared with experimental results using same geometry. With occurrence of instability in the entrance of duct, Kelvin-Helmholtz condition satisfies and with increasing instability, slug phenomenon occurs. With closing the cross-section of duct, slug causes pressure gradient in it. Trapped air behind a slug transfers the momentum and increases the kinetic energy of slug. In this research the kinetic energy of a slug is investigated.


2014 ◽  
Vol 700 ◽  
pp. 643-646
Author(s):  
Dong Wang ◽  
Si Qing Zhang ◽  
Yun Long Zhang

In order to investigate the silt abrasion of modified trailing edge of stay vane in Francis turbine, the numerical simulation of trailing edge with different geometries were carried out based on the solid-liquid two-phase flow by means of Computation Fluid Dynamics. The results show that low solid volume fraction distributes on the chamfered surface of trailing edge, and high solid volume fraction distributes on the end of oblique surface. The smaller the modified angle is, the larger the distribution area of high solid volume fraction is, which show the trailing edge with smaller oblique angle may suffer from silt abrasion. Therefore, in order to solve the vibration caused by Karman vortex the trailing edge has to be sharpened, the oblique angle of trailing edge should not be too small. At end of trailing edge needs to ensure a certain thickness, especially the trailing edge near the lower ring can be thicker, which can meet the anti-abrasion requirements.


2012 ◽  
Vol 446-449 ◽  
pp. 3803-3809
Author(s):  
Hooman Hoornahad ◽  
Eduard A. B. Koenders

The common approach to describe the rheological behavior of a granular-paste material relies on a description of the motion within the frame of continuum mechanics. However, since a granular-paste system cannot be considered as a homogeneous continuous fluid its behavior should not be estimated by common fluid models, such as Bingham or Herschell Bulkley models. Therefore, a continuum approach is not considered the best option to study the phase effects of a multi-phase material and its corresponding rheological behavior. In this particular case analytical techniques based on the multi-phase models are required. A more appropriate approach is to consider a granular-paste material as a two phase model that accounts for the effect of the gradually decreasing the volume fraction of the pasty phase until getting to zero value on the rheological behavior of the material. In this investigation, a cone test is used to evaluate the rheological behavior of a granular mix where a discrete element method (DEM) is considered as a basis of the numerical simulation.


2006 ◽  
Vol 28 (3) ◽  
pp. 134-144
Author(s):  
Nguyen The Duc

The paper presents a numerical method to simulate two-phase turbulent cavitating flows in ducts of varying cross-section usually faced in engineering. The method is based on solution of two-phase Reynolds-averaged Navier-Stokes equations of two-phase mixture. The numerical method uses artificial compressibility algorithm extended to unsteady flows with dual-time technique. The discreted method employs an implicit, characteristic-based upwind differencing scheme in the curvilinear grid systems. Numerical simulation of an unsteady three-dimensional two-phase cavitating flow in a duct of varying cross-section with available experiment was performed. The unsteady important characteristics of the unsteady flow can be observed in results of numerical simulation. Comparison of predicted results with experimental data for time-averaged velocity and phase fraction are provided.


2019 ◽  
Vol 5 (11) ◽  
pp. 2472-2485
Author(s):  
Balamuralikrishnan R. ◽  
M. Al Madhani ◽  
R. Al Madhani

Ferrocement is one of the cement-based composites used for retrofitting and rehabilitation among many applications. Ferrocement is one of the reinforced concrete form with lightweight and thin composite with durability and environmental resistant that strengthen the conventional RC columns to increase its strength and serviceability. This paper examines the performance of the ferrocement wrapping in RC columns experimentally with numerical simulation using ANSYS19. Totally sixteen number of RC column of size 150 mm × 150 mm in cross section and 450 mm in length were cast and tested in laboratory. Twelve are retrofitted columns with respect to volume fraction and wrapping technique. Six columns were retrofitted by full wrapping technique and six columns of strip wrapping technique. The remaining four columns are control columns in virgin condition to compare with the retrofitted columns. Concerning the volume fraction of each specimen, the number of pre-woven mesh layers were single layer, double layer and three layers. C30 concrete grade adopted in all specimens as per ACI Committee 211-1.91 with 4H8 longitudinal reinforcement and H6 of 75mm c/c ties. As the previous researchers examined the ferrocement and proved its efficiency. This study aims to examine the ferrocement in full and strip wrapping technique to compare their efficiency to increase the strength. Finite element analysis using ANSYS19 adopted to compare the experimental data with the numerical simulation. The results are analyzed and observed that the ferrocement has increased the confinement and strength of the RC columns. 


Sign in / Sign up

Export Citation Format

Share Document