The relationship between source supply and mixed deposition of siliciclastic and carbonate: First to second member of the Shahejie Formation, Paleogene, Bohai Sea area, China

2021 ◽  
pp. 1-28
Author(s):  
Wei Xu ◽  
Zhengyu Li ◽  
Huiyong Li ◽  
Can Zhang ◽  
Meng Zhao ◽  
...  

There are various types of mixed siliciclastic-carbonate sediments developed in the Bohai Sea area during the period of the first to second member of the Shahejie Formation (E2s1-2) of the Paleocene. We have concluded that the period of E2s1-2 was very suitable for the development of carbonate minerals and organisms because of the stable tectonic background, the weak siliciclastic influence of large source systems outside the basin, and the high salinity of the water. There were many local uplifts inside the basin during E2s1-2, and the source area, supply direction, and quantity of the local provenance varied greatly. We summarized that the mixed sediments generally developed in the intermittent and stagnant periods of the source supply, or on the flank or distal end of the source supply direction due to the absence of direct interference of terrigenous clasts. To a large extent, the formation of different types of mixed deposits is controlled by the different spatiotemporal relationship with siliciclastic supply. The background of strong source supply led to the formation of large-scale mixed deposits that were mainly composed of terrigenous clasts. Mixed deposits are mainly composed of organisms and carbonate with relatively large depositional thickness formed on the flank of source supply in the steep slope area. On the flank of source supply in the gentle slope belt, thinner mixed deposits with terrigenous clasts mainly formed and thin-layer carbonate clastic-dominated deposits formed on abandoned deltas. On the uplift of the buried hill far away from the provenance, thick mixed deposits mainly composed of bioclastic were formed whereas fine-grained mixed deposits formed under the low-energy argillaceous background.

2020 ◽  
Vol 8 (2) ◽  
pp. SF95-SF111
Author(s):  
Yongan Xue ◽  
Chengmin Niu ◽  
Wei Xu ◽  
Xiaojun Pang ◽  
Li Zhang

Mixed siliciclastic-carbonate sediments occur broadly in modern and ancient systems. Studies on mixing processes began in shallow shelf environments; however, the genetic model of marine mixed sediments is difficult to apply to continental rift basins due to the complex palaeogeographic environment. We identified three mixing types in the first and second members of the Palaeogene Shahejie Formation (E2s1–2) in the Qinhuangdao area of the Bohai Sea: (1) mixed fan delta, (2) retrogradation mixed sheet, and (3) mixed sheet without siliciclastic influx. Tectonic stability, arid climate, and saline lakes are prerequisite conditions for the development of mixed sediments, whereas the palaeogeomorphologic unit should be the critical factor. We also concluded that the primary sedimentary material contains near-source coarse terrestrial debris, and the advantageous lithologic facies producing biological components are the foundation for high-quality mixed reservoirs, which are characterized by thick layers and favorable porosities and permeabilities. The micritic coatings and early dolomitization against the background of a saline lake environment favored the preservation of primary pores, whereas the leaching by atmospheric water and organic acid erosion during thermal evolution of the source rock created many secondary pores. In addition, hydrocarbon charging protected the reservoir space from carbonate cementation.


2019 ◽  
Vol 6 (4) ◽  
pp. 305-316 ◽  
Author(s):  
Mingcai Hou ◽  
Haiyang Cao ◽  
Huiyong Li ◽  
Anqing Chen ◽  
Ajuan Wei ◽  
...  

1992 ◽  
Vol 6 ◽  
pp. 95-95
Author(s):  
Howard R. Feldman ◽  
Christopher G. Maples ◽  
Allen W. Archer ◽  
Ronald R. West ◽  
Erik P. Kvale

Estuaries were important sites of deposition throughout most of the Pennsylvanian in the Midcontinent. Modern estuaries typically occur within flooded river valleys where marine and fresh waters mix. Characteristic estuarine circulation results in locally high rates of deposition of muddy sediment that can lead to good preservation of fossils. Several Pennsylvanian conservat-Lagerstätten are best interpreted as having formed within ancient estuaries. Three types of estuarine deposits have been identified. Type 1 estuarine systems are large-scale transgressive systems that start with fluvial sands overlying an erosional surface. This is overlain successively by middle-estuarine laminated mudstone, and finally marine mudstone and shale. Well-preserved fossils occur in laminated mudstones and siltstones. This sequence may include within in it type 3 estuarine Lagerstätten. An example is the Douglas Group (Missourian, Kansas).Type 2 estuarine Lagerstätten consist of thin estuarine deposits confined to narrow paleochannels. This includes the Garnett (Missourian, Kansas) and Hamilton (Virgilian, Kansas) deposits, both of which contain articulated vertebrates and well-preserved plants. Both channels are filled with mixed siliciclastic and carbonate sediments. Fine grained facies from which the best fossils are recovered in both contain evidence of tidal deposition, although tidal rhythmicity is best developed in the Hamilton channel. Plant assemblages in both are dominated by the conifer Walchia, probably indicating a relatively dry climate.Type 3 estuarine Lagerstätten consist of thick gray-shale wedges that overlie coals. The best-known example is the Francis Creek Shale (Desmoinesian, Illinois). A relatively wet climate is indicated by abundant fern and seed-fern foliage. Laminations in shale facies commonly show well-developed tidal rhythmicity. A typical stratigraphic succession starts with laminated shale overlying coal. This grades upwards into flaser and lenticular bedding to ripple and then large-scale cross-bedded sandstone. Upright trees rooted in the coal indicate rapid burial. Well-preserved fossils are recovered from early-diagenetic siderite concretions from the laminated shale.Preservation of fossils is best in laminated mudstones deposited in middle-estuarine environments where conditions are ideal for good preservation. In all cases so far studied the zones of best preservation are well laminated and have sparse (if any) burrows and sessile benthic fossils. Most of the well-preserved organisms are terrestrial, nektonic, or at least mobile. Brackish and fluctuating salinities restricted scavenging and burrowing organisms that may scatter skeletons. High turbidity and deposition rate may have further discouraged many organisms. Matching bedding rhythmicity with tidal cycles allows calculation of depositional rates of 1 cm or more of compacted sediment per 2-week neap-spring tidal cycle. This is consistent with the high rates of deposition known from modern tidal environments. High depositional rates assured that any organism that fell to the sea floor was buried in a few hours to a few days. Once buried anoxic conditions established around decaying carcasses may have led to early mineralization.


2019 ◽  
Vol 22 (3) ◽  
pp. 365-380 ◽  
Author(s):  
Matthias Olthaar ◽  
Wilfred Dolfsma ◽  
Clemens Lutz ◽  
Florian Noseleit

In a competitive business environment at the Bottom of the Pyramid smallholders supplying global value chains may be thought to be at the whims of downstream large-scale players and local market forces, leaving no room for strategic entrepreneurial behavior. In such a context we test the relationship between the use of strategic resources and firm performance. We adopt the Resource Based Theory and show that seemingly homogenous smallholders deploy resources differently and, consequently, some do outperform others. We argue that the ‘resource-based theory’ results in a more fine-grained understanding of smallholder performance than approaches generally applied in agricultural economics. We develop a mixed-method approach that allows one to pinpoint relevant, industry-specific resources, and allows for empirical identification of the relative contribution of each resource to competitive advantage. The results show that proper use of quality labor, storage facilities, time of selling, and availability of animals are key capabilities.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 41
Author(s):  
Tim Jurisch ◽  
Stefan Cantré ◽  
Fokke Saathoff

A variety of studies recently proved the applicability of different dried, fine-grained dredged materials as replacement material for erosion-resistant sea dike covers. In Rostock, Germany, a large-scale field experiment was conducted, in which different dredged materials were tested with regard to installation technology, stability, turf development, infiltration, and erosion resistance. The infiltration experiments to study the development of a seepage line in the dike body showed unexpected measurement results. Due to the high complexity of the problem, standard geo-hydraulic models proved to be unable to analyze these results. Therefore, different methods of inverse infiltration modeling were applied, such as the parameter estimation tool (PEST) and the AMALGAM algorithm. In the paper, the two approaches are compared and discussed. A sensitivity analysis proved the presumption of a non-linear model behavior for the infiltration problem and the Eigenvalue ratio indicates that the dike infiltration is an ill-posed problem. Although this complicates the inverse modeling (e.g., termination in local minima), parameter sets close to an optimum were found with both the PEST and the AMALGAM algorithms. Together with the field measurement data, this information supports the rating of the effective material properties of the applied dredged materials used as dike cover material.


2021 ◽  
pp. 014459872110310
Author(s):  
Min Li ◽  
Xiongqi Pang ◽  
Guoyong Liu ◽  
Di Chen ◽  
Lingjian Meng ◽  
...  

The fine-grained rocks in the Paleogene Shahejie Formation in Nanpu Sag, Huanghua Depression, Bohai Bay Basin, are extremely important source rocks. These Paleogene rocks are mainly subdivided into organic-rich black shale and gray mudstone. The average total organic carbon contents of the shale and mudstone are 11.5 wt.% and 8.4 wt.%, respectively. The average hydrocarbon (HC)-generating potentials (which is equal to the sum of free hydrocarbons (S1) and potential hydrocarbons (S2)) of the shale and mudstone are 39.3 mg HC/g rock and 28.5 mg HC/g rock, respectively, with mean vitrinite reflectance values of 0.82% and 0.81%, respectively. The higher abundance of organic matter in the shale than in the mudstone is due mainly to paleoenvironmental differences. The chemical index of alteration values and Na/Al ratios reveal a warm and humid climate during shale deposition and a cold and dry climate during mudstone deposition. The biologically derived Ba and Ba/Al ratios indicate high productivity in both the shale and mudstone, with relatively low productivity in the shale. The shale formed in fresh to brackish water, whereas the mudstone was deposited in fresh water, with the former having a higher salinity. Compared with the shale, the mudstone underwent higher detrital input, exhibiting higher Si/Al and Ti/Al ratios. Shale deposition was more dysoxic than mudstone deposition. The organic matter enrichment of the shale sediments was controlled mainly by reducing conditions followed by moderate-to-high productivity, which was promoted by a warm and humid climate and salinity stratification. The organic matter enrichment of the mudstone was less than that of the shale and was controlled by relatively oxic conditions.


Author(s):  
Anil S. Baslamisli ◽  
Partha Das ◽  
Hoang-An Le ◽  
Sezer Karaoglu ◽  
Theo Gevers

AbstractIn general, intrinsic image decomposition algorithms interpret shading as one unified component including all photometric effects. As shading transitions are generally smoother than reflectance (albedo) changes, these methods may fail in distinguishing strong photometric effects from reflectance variations. Therefore, in this paper, we propose to decompose the shading component into direct (illumination) and indirect shading (ambient light and shadows) subcomponents. The aim is to distinguish strong photometric effects from reflectance variations. An end-to-end deep convolutional neural network (ShadingNet) is proposed that operates in a fine-to-coarse manner with a specialized fusion and refinement unit exploiting the fine-grained shading model. It is designed to learn specific reflectance cues separated from specific photometric effects to analyze the disentanglement capability. A large-scale dataset of scene-level synthetic images of outdoor natural environments is provided with fine-grained intrinsic image ground-truths. Large scale experiments show that our approach using fine-grained shading decompositions outperforms state-of-the-art algorithms utilizing unified shading on NED, MPI Sintel, GTA V, IIW, MIT Intrinsic Images, 3DRMS and SRD datasets.


2021 ◽  
Vol 13 (16) ◽  
pp. 3065
Author(s):  
Libo Wang ◽  
Rui Li ◽  
Dongzhi Wang ◽  
Chenxi Duan ◽  
Teng Wang ◽  
...  

Semantic segmentation from very fine resolution (VFR) urban scene images plays a significant role in several application scenarios including autonomous driving, land cover classification, urban planning, etc. However, the tremendous details contained in the VFR image, especially the considerable variations in scale and appearance of objects, severely limit the potential of the existing deep learning approaches. Addressing such issues represents a promising research field in the remote sensing community, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose a Bilateral Awareness Network which contains a dependency path and a texture path to fully capture the long-range relationships and fine-grained details in VFR images. Specifically, the dependency path is conducted based on the ResT, a novel Transformer backbone with memory-efficient multi-head self-attention, while the texture path is built on the stacked convolution operation. In addition, using the linear attention mechanism, a feature aggregation module is designed to effectively fuse the dependency features and texture features. Extensive experiments conducted on the three large-scale urban scene image segmentation datasets, i.e., ISPRS Vaihingen dataset, ISPRS Potsdam dataset, and UAVid dataset, demonstrate the effectiveness of our BANet. Specifically, a 64.6% mIoU is achieved on the UAVid dataset.


Author(s):  
Hai Wang ◽  
Baoshen Guo ◽  
Shuai Wang ◽  
Tian He ◽  
Desheng Zhang

The rise concern about mobile communication performance has driven the growing demand for the construction of mobile network signal maps which are widely utilized in network monitoring, spectrum management, and indoor/outdoor localization. Existing studies such as time-consuming and labor-intensive site surveys are difficult to maintain an update-to-date finegrained signal map within a large area. The mobile crowdsensing (MCS) paradigm is a promising approach for building signal maps because collecting large-scale MCS data is low-cost and with little extra-efforts. However, the dynamic environment and the mobility of the crowd cause spatio-temporal uncertainty and sparsity of MCS. In this work, we leverage MCS as an opportunity to conduct the city-wide mobile network signal map construction. We propose a fine-grained city-wide Cellular Signal Map Construction (CSMC) framework to address two challenges including (i) the problem of missing and unreliable MCS data; (ii) spatio-temporal uncertainty of signal propagation. In particular, CSMC captures spatio-temporal characteristics of signals from both inter- and intra- cellular base stations and conducts missing signal recovery with Bayesian tensor decomposition to build large-area fine-grained signal maps. Furthermore, CSMC develops a context-aware multi-view fusion network to make full use of external information and enhance signal map construction accuracy. To evaluate the performance of CSMC, we conduct extensive experiments and ablation studies on a large-scale dataset with over 200GB MCS signal records collected from Shanghai. Experimental results demonstrate that our model outperforms state-of-the-art baselines in the accuracy of signal estimation and user localization.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-35
Author(s):  
Juncheng Yang ◽  
Yao Yue ◽  
K. V. Rashmi

Modern web services use in-memory caching extensively to increase throughput and reduce latency. There have been several workload analyses of production systems that have fueled research in improving the effectiveness of in-memory caching systems. However, the coverage is still sparse considering the wide spectrum of industrial cache use cases. In this work, we significantly further the understanding of real-world cache workloads by collecting production traces from 153 in-memory cache clusters at Twitter, sifting through over 80 TB of data, and sometimes interpreting the workloads in the context of the business logic behind them. We perform a comprehensive analysis to characterize cache workloads based on traffic pattern, time-to-live (TTL), popularity distribution, and size distribution. A fine-grained view of different workloads uncover the diversity of use cases: many are far more write-heavy or more skewed than previously shown and some display unique temporal patterns. We also observe that TTL is an important and sometimes defining parameter of cache working sets. Our simulations show that ideal replacement strategy in production caches can be surprising, for example, FIFO works the best for a large number of workloads.


Sign in / Sign up

Export Citation Format

Share Document