scholarly journals Testing geologic assumptions and scenarios in carbonate exploration: Insights from integrated stratigraphic, diagenetic, and seismic forward modeling

2018 ◽  
Vol 37 (9) ◽  
pp. 672-680 ◽  
Author(s):  
Cyprien Lanteaume ◽  
François Fournier ◽  
Matthieu Pellerin ◽  
Jean Borgomano

Carbonates are considered complex, heterogeneous at all scales, and unfortunately often poorly seismically imaged. We propose a methodology based on forward-modeling approaches to test the validity of common exploration assumptions (e.g., chronostratigraphic value of seismic reflectors) and of geologic interpretations (e.g., stratigraphic correlations and depositional and diagenetic architecture) that are determined from a limited amount of data. The proposed workflow includes four main steps: (1) identification and quantification of the primary controls on carbonate deposition and the prediction of the carbonate stratigraphic architecture (through stratigraphic forward modeling); (2) identification of diagenetic processes and prediction of the spatial distribution of diagenetic products (diagenetic forward modeling); (3) quantification of the impact of diagenesis on acoustic and reservoir properties; and (4) computation of synthetic seismic models based on various scenarios of stratigraphic and diagenetic architectures and comparison with actual seismic. The likelihood of a given scenario is tested by quantifying the misfit between the modeled versus the real seismic. This workflow illustrates the relevance of forward-modeling approaches for building realistic models that can be shared by the various disciplines of carbonate exploration (sedimentology, stratigraphy, diagenesis, seismic, geomodeling, and reservoir).

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Stephan Becker ◽  
Lars Reuning ◽  
Joachim E. Amthor ◽  
Peter A. Kukla

A common problem in dolomite reservoirs is the heterogeneous distribution of porosity-reducing diagenetic phases. The intrasalt carbonates of the Ediacaran-Early Cambrian Ara Group in the South Oman Salt Basin represent a self-sourcing petroleum system. Depositional facies and carbonate/evaporite platform architecture are well understood, but original reservoir properties have been modified by diagenesis. Some of the carbonate reservoirs failed to produce hydrocarbons at acceptable rates, which triggered this study. The extent of primary porosity reduction by diagenetic phases was quantified using point counting. To visualize the distribution of diagenetic phases on a field scale, we constructed 2D interpolation diagenesis maps to identify patterns in cementation. The relative timing of diagenetic events was constrained based on thin-section observations and stable isotope analyses. Near-surface diagenesis is dominated by reflux-related processes, leading to porosity inversion in initial highly porous facies and a patchy distribution of early cements. This strong diagenetic overprint of primary and early diagenetic porosity by reflux-related cements leads to a reduction of stratigraphic and facies control on porosity. Calcite was identified as a burial-related cement phase that leads to an almost complete loss of intercrystalline porosity and permeability. Bitumen is an important pore-occluding phase and time marker of the deep-burial realm. The stratigraphic position of the dolomite reservoirs embedded at the base of a salt diapir had a strong impact on its diagenetic development. The salt isolated the dolomites from external fluids, leading to a closed system diagenesis and the buildup of near lithostatic fluid pressures. In combination, these processes decreased the impact of further burial diagenetic processes. The study highlights that cement distribution in salt-encased carbonate reservoirs is mainly related to early diagenetic processes but can be very heterogeneous on a field scale. Further work is needed to implement these heterogeneities in an integrated numerical reservoir model.


Author(s):  
Qamar UZ Zaman Dar ◽  
Renhai Pu ◽  
Christopher Baiyegunhi ◽  
Ghulam Shabeer ◽  
Rana Imran Ali ◽  
...  

AbstractThe sandstone units of the Early Cretaceous Lower Goru Formation are significant reservoir for gas, oil, and condensates in the Lower Indus Basin of Pakistan. Even though these sandstones are significant reservoir rocks for hydrocarbon exploration, the diagenetic controls on the reservoir properties of the sandstones are poorly documented. For effective exploration, production, and appraisal of a promising reservoir, the diagenesis and reservoir properties must be comprehensively analyzed first. For this study, core samples from depths of more than 3100 m from the KD-01 well within the central division of the basin have been studied. These sandstones were analyzed using petrographic, X-ray diffraction, and scanning electron microscopic analyses to unravel diagenetic impacts on reservoir properties of the sandstone. Medium to coarse-grained and well-sorted sandstone have been identified during petrographic study. The sandstone are categorized as arkose and lithic arkose. Principal diagenetic events which have resulted in changing the primary characters of the sandstones are compaction, cementation, dissolution, and mineral replacement. The observed diagenetic processes can be grouped into early, burial, and late diagenesis. Chlorite is the dominant diagenetic constituent that occurs as rims, coatings, and replacing grains. The early phase of coating of authigenic chlorite has preserved the primary porosity. The recrystallization of chlorite into chamosite has massively reduced the original pore space because of its bridging structure. The current study reveals that diagenetic processes have altered the original rock properties and reservoir characteristics of the Lower Goru sandstone. These preliminary outcomes of this study have great potential to improve the understanding of diagenetic process and their impact on reservoir properties of the Lower Goru sandstone in the Lower Indus Basin and adjoining areas.


Author(s):  
Roger Moussa ◽  
Bruno Cheviron

Floods are the highest-impact natural disasters. In agricultural basins, anthropogenic features are significant factors in controlling flood and erosion. A hydrological-hydraulic-erosion diagnosis is necessary in order to choose the most relevant action zones and to make recommendations for alternative land uses and cultivation practices in order to control and reduce floods and erosion. This chapter first aims to provide an overview of the flow processes represented in the various possible choices of model structure and refinement. It then focuses on the impact of the spatial distribution and temporal variation of hydrological soil properties in farmed basins, representing their effects on the modelled water and sediment flows. Research challenges and leads are then tackled, trying to identify the conditions in which sufficient adequacy exists between site data and modelling strategies.


2020 ◽  
Vol 16 (4) ◽  
pp. 271-289
Author(s):  
Nathan Sandholtz ◽  
Jacob Mortensen ◽  
Luke Bornn

AbstractEvery shot in basketball has an opportunity cost; one player’s shot eliminates all potential opportunities from their teammates for that play. For this reason, player-shot efficiency should ultimately be considered relative to the lineup. This aspect of efficiency—the optimal way to allocate shots within a lineup—is the focus of our paper. Allocative efficiency should be considered in a spatial context since the distribution of shot attempts within a lineup is highly dependent on court location. We propose a new metric for spatial allocative efficiency by comparing a player’s field goal percentage (FG%) to their field goal attempt (FGA) rate in context of both their four teammates on the court and the spatial distribution of their shots. Leveraging publicly available data provided by the National Basketball Association (NBA), we estimate player FG% at every location in the offensive half court using a Bayesian hierarchical model. Then, by ordering a lineup’s estimated FG%s and pairing these rankings with the lineup’s empirical FGA rate rankings, we detect areas where the lineup exhibits inefficient shot allocation. Lastly, we analyze the impact that sub-optimal shot allocation has on a team’s overall offensive potential, demonstrating that inefficient shot allocation correlates with reduced scoring.


Author(s):  
Sara M.T. Polo

AbstractThis article examines the impact and repercussions of the COVID-19 pandemic on patterns of armed conflict around the world. It argues that there are two main ways in which the pandemic is likely to fuel, rather than mitigate, conflict and engender further violence in conflict-prone countries: (1) the exacerbating effect of COVID-19 on the underlying root causes of conflict and (2) the exploitation of the crisis by governments and non-state actors who have used the coronavirus to gain political advantage and territorial control. The article uses data collected in real-time by the Armed Conflict Location & Event Data Project (ACLED) and the Johns Hopkins University to illustrate the unfolding and spatial distribution of conflict events before and during the pandemic and combine this with three brief case studies of Afghanistan, Nigeria, and Libya. Descriptive evidence shows how levels of violence have remained unabated or even escalated during the first five months of the pandemic and how COVID-19-related social unrest has spread beyond conflict-affected countries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Anchi Wu ◽  
Guoyi Zhou

AbstractPhosphorus (P) is an important element in terrestrial ecosystems and plays a critical role in soil quality and ecosystem productivity. Soil total P distributions have undergone large spatial changes as a result of centuries of climate change. It is necessary to study the characteristics of the horizontal and vertical distributions of soil total P and its influencing factors. In particular, the influence of climatic factors on the spatial distribution of soil total P in China’s forest ecosystems remain relatively unknown. Here, we conducted an intensive field investigation in different forest ecosystems in China to assess the effect of climatic factors on soil total P concentration and distribution. The results showed that soil total P concentration significantly decreased with increasing soil depth. The spatial distribution of soil total P increased with increasing latitude and elevation gradient but decreased with increasing longitude gradient. Random forest models and linear regression analyses showed that the explanation rate of bioclimatic factors and their relationship with soil total P concentration gradually decreased with increasing soil depths. Variance partitioning analysis demonstrated that the most important factor affecting soil total P distribution was the combined effect of temperature and precipitation factor, and the single effect of temperature factors had a higher explanation rate compare with the single effect of precipitation factors. This work provides a new farmework for the geographic distribution pattern of soil total P and the impact of climate variability on P distribution in forest ecosystems.


2021 ◽  
Vol 13 (5) ◽  
pp. 2708
Author(s):  
Ziqi Yin ◽  
Jianzhai Wu

In recent years, through the implementation of a series of policies, such as the delimitation of major grain producing areas and the construction of advantageous and characteristic agricultural product areas, the spatial distribution of agriculture in China has changed significantly; however, research on the impact of such changes on the efficiency of agricultural technology is still lacking. Taking 11 cities in Hebei Province as the research object, this study examines the spatial dependence of regional agricultural technical efficiency using the stochastic frontier analysis and spatial econometric analysis. The results show that the improvement in agricultural technical efficiency is evident in all cities in Hebei Province from 2008 to 2017, but there is scope for further improvement. Industrial agglomeration has statistical significance in improving the efficiency of agricultural technology. Further, there is an obvious spatial correlation and difference in agricultural technical efficiency. Optimizing the spatial distribution of agricultural production, promoting the innovation, development, and application of agricultural technology, and promoting the expansion of regional elements can contribute to improving agricultural technical efficiency.


2020 ◽  
Vol 12 (2) ◽  
pp. 220 ◽  
Author(s):  
Han Xiao ◽  
Fenzhen Su ◽  
Dongjie Fu ◽  
Qi Wang ◽  
Chong Huang

Long time-series monitoring of mangroves to marine erosion in the Bay of Bangkok, using Landsat data from 1987 to 2017, shows responses including landward retreat and seaward extension. Quantitative assessment of these responses with respect to spatial distribution and vegetation growth shows differing relationships depending on mangrove growth stage. Using transects perpendicular to the shoreline, we calculated the cross-shore mangrove extent (width) to represent spatial distribution, and the normalized difference vegetation index (NDVI) was used to represent vegetation growth. Correlations were then compared between mangrove seaside changes and the two parameters—mangrove width and NDVI—at yearly and 10-year scales. Both spatial distribution and vegetation growth display positive impacts on mangrove ecosystem stability: At early growth stages, mangrove stability is positively related to spatial distribution, whereas at mature growth the impact of vegetation growth is greater. Thus, we conclude that at early growth stages, planting width and area are more critical for stability, whereas for mature mangroves, management activities should focus on sustaining vegetation health and density. This study provides new rapid insights into monitoring and managing mangroves, based on analyses of parameters from historical satellite-derived information, which succinctly capture the net effect of complex environmental and human disturbances.


Sign in / Sign up

Export Citation Format

Share Document