Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats

2005 ◽  
Vol 24 (3) ◽  
pp. 137-147 ◽  
Author(s):  
Muzamil Ahmad ◽  
Sofiyan Saleem ◽  
Abdullah Shafique Ahmad ◽  
Mubeen Ahmad Ansari ◽  
Seema Yousuf ◽  
...  

6-Hydroxydopamine (6-OHDA) is one of the most widely used rat models for Parkinson's disease. There is ample evidence in the literature that 6-OHDA elicits its toxic manifestations through oxidant stress. In the present study, we evaluated the anti-parkinsonian effects of Withania somnifera extract, which has been reported to have potent anti-oxidant, anti-peroxidative and free radical quenching properties in various diseased conditions. Rats were pretreated with 100, 200 and 300 mg/kg b.w. of the W. somnifera extract orally for 3 weeks. On day 21, 2 mL of 6-OHDA (10 mg in 0.1% in ascorbic acidsaline) was infused into the right striatum while sham operated group received 2 mL of the vehicle. Three weeks after 6-OHDA injections, rats were tested for neurobehavioral activity and were killed 5 weeks after lesioning for the estimation of lipidperoxidation, reduced glutathione content, activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase, catecholamine content, dopaminergic D2 receptor binding and tyrosine hydroxylase expression. W. somnifera extract was found to reverse all the parameters significantly in a dose-dependent manner. Thus, the study demonstrates that the extract of W. somnifera may be helpful in protecting the neuronal injury in Parkinson's disease.

2002 ◽  
Vol 11 (3) ◽  
pp. 185-193 ◽  
Author(s):  
K. A. Baker ◽  
M. B. Purdy ◽  
D. Sadi ◽  
K. Mukhida ◽  
I. Mendez

Optimal placement of intrastriatal dopaminergic grafts is likely crucial to optimize clinical recovery in Parkinson's disease (PD). The target sites of dopaminergic grafts vary among clinical trials and may partially explain the variable results in clinical efficacy reported thus far. In this study we hypothesized that a subsequent dopaminergic graft may promote functional recovery following a suboptimal initial graft. To test this hypothesis, rats with unilateral 6-hydroxydopamine lesions of the right nigrostriatal pathway were randomly divided into three groups. The first group received 900,000 fetal nigral cells in the medial striatum only (n = 6). The second group received 900,000 cells in both the medial and lateral striatum simultaneously (1.8 million total; n = 8). The final group received a second graft of 900,000 cells in the lateral striatum 6 weeks following initial transplantation of a medial graft (n = 6). Amphetamine-induced circling behavior was significantly reduced in both simultaneous and sequential graft groups at 9 and 12 weeks following transplantation of the initial graft. However, no recovery was noted in the single medial graft group at those time points. Furthermore, increased survival of dopaminergic cells was observed in the lateral graft of sequentially grafted animals compared with the medial graft. We conclude that a well-positioned subsequent graft can restore function in animals with a suboptimal initial graft and that the initial graft may improve survival of the second graft. These results are further discussed in relation to their important clinical implication for neural transplantation in PD.


2021 ◽  
Author(s):  
Min-Ho Nam ◽  
Jong-Hyun Park ◽  
Hyo Jung Song ◽  
Ji Won Choi ◽  
Siwon Kim ◽  
...  

AbstractMonoamine oxidase-B (MAO-B) is a well-established therapeutic target for Parkinson’s disease (PD); however, previous clinical studies on currently available irreversible MAO-B inhibitors have yielded disappointing neuroprotective effects. Here, we tested the therapeutic potential of KDS2010, a recently synthesized potent, selective, and reversible MAO-B inhibitor in multiple animal models of PD. We designed and synthesized a series of α-aminoamide derivatives and found that derivative KDS2010 exhibited the highest potency, specificity, reversibility, and bioavailability (> 100%). In addition, KDS2010 demonstrated significant neuroprotective and anti-neuroinflammatory efficacy against nigrostriatal pathway destruction in the mouse MPTP model of parkinsonism. Treatment with KDS2010 also alleviated parkinsonian motor dysfunction in 6-hydroxydopamine-induced and A53T mutant α-synuclein overexpression rat models of PD. Moreover, KDS2010 showed virtually no toxicity or side effects in non-human primates. KDS2010 could be a next-generation therapeutic candidate for PD.


2020 ◽  
Vol 19 (6) ◽  
pp. 1197-1201 ◽  
Author(s):  
Jing Li ◽  
Yue Liu ◽  
Li Wang ◽  
Zhaowei Gu ◽  
Zhigang Huan ◽  
...  

Purpose: To investigation the protective effects of hesperetin against 6-hydroxydopamine (6-OHDA)- induced neurotoxicity. Methods: SH-SY5Y cells were incubated with 6-OHDA to create an in vitro model of neurotoxicity. This model was used to test the neuroprotective effects of hesperetin. Cell viability was assessed by MTT and lactate dehydrogenase (LDH) release assays. Flow cytometry and western blot were used to quantify apoptosis. Oxidative stress was evaluated by determining intracellular glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS). Results: In SH-SY5Y cells, treatment with 6-OHDA decreased cell viability and promoted LDH release. However, exogenous hesperetin protected against 6-OHDA-mediated toxicity. Similarly, although incubation with 6-OHDA induced apoptosis and increased cleaved caspase-3 and -9 levels, treatment with hesperetin protected against these effects. Treatment with 6-OHDA also led to significant oxidative stress, as indicated by reduced GSH and SOD levels and increased MDA and ROS levels in SH-SY5Y cells. However, these changes were reversed by pre-treatment with hesperetin. Of interest, hesperetin led to changes in 6-OHDA-induced expression of NRF2, heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCL) catalytic subunit (GCLC), and GCL modulatory (GCLM). Conclusion: Hesperetin protects against cell toxicity, apoptosis, and oxidative stress via activation of NRF2 pathway in a 6-OHDA-induced model of neurotoxicity. Future studies should investigate the use of hesperetin as a potential therapeutic approach for prevention or management of Parkinson’s disease. Keywords: Hesperetin, 6-OHDA, Neurotoxicity, NRF2, Parkinson’s disease


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Juan Lu ◽  
Xuelei Liu ◽  
Ye Tian ◽  
Hang Li ◽  
Zhenxing Ren ◽  
...  

The objective of this study was to explore the neuroprotective effect of moxibustion on rats with Parkinson’s disease (PD) and its mechanism. A Parkinson’s disease model was established in rats using a two-point stereotactic 6-hydroxydopamine injection in the right substantia nigra (SN) and ventral tegmental area. The rats received moxibustion at the Baihui (GV20) and Sishencong (EX-HN1) acupoints for 20 minutes, six times a week, for 6 weeks. The right SN tissue was histologically and immunohistochemically examined. Differentially expressed genes (DEGs) were identified through RNA sequencing. In addition, the levels of tyrosine hydroxylase (TH), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1) in SN were measured. In comparison to the model group, the moxibustion group showed a significantly greater TH immunoreactivity and a higher behavioural score. In particular, moxibustion led to an increase in the number and morphological stability of SN neural cells. The functional pathway analysis showed that DEGs are closely related to the ferroptosis pathway. GPX4 and FTH1 in the SN were significantly overexpressed in the moxibustion-treated rats with PD. Moxibustion can effectively reduce the death of SN neurons, decrease the occurrence of ferroptosis, and increase the TH activity to protect the neurons in rats with PD. The protective mechanism may be associated with suppression of the ferroptosis.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Chen ◽  
Decai Qiao ◽  
Xiaoli Liu ◽  
Kaixuan Shi

Hyperactivity in the corticostriatal glutamatergic pathway (CGP) induces basal ganglia dysfunction, contributing to parkinsonian syndrome (PS). Physical exercise can improve PS. However, the effect of exercise on the CGP, and whether this pathway is involved in the improvement of PS, remains unclear. Parkinson’s disease (PD) was induced in rats by 6-hydroxydopamine injection into the right medial forebrain bundle. Motor function was assessed using the cylinder test. Striatal neuron (SN) spontaneous and evoked firing activity was recorded, and the expression levels of Cav1.3 and CaMKII in the striatum were measured after 4 weeks of treadmill exercise. The motor function in PD rats was improved by treadmill exercise. SN showed significantly enhanced excitability, and treadmill exercise reduced SN excitability in PD rats. In addition, firing activity was evoked in SNs by stimulation of the primary motor cortex, and SNs exhibited significantly decreased stimulus threshold, increased firing rates, and reduced latency. The expression of Cav1.3 and p-CaMKII (Thr286) in the striatum were enhanced in PD rats. However, these effects were reversed by treadmill exercise. These findings suggest that treadmill exercise inhibits CGP hyperactivity in PD rats, which may be related to improvement of PS.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1551 ◽  
Author(s):  
Valeria C. Gonçalves ◽  
Daniel J. L. L. Pinheiro ◽  
Tomás de la Rosa ◽  
Antônio-Carlos G. de Almeida ◽  
Fúlvio A. Scorza ◽  
...  

Patients with Parkinson’s disease (PD) manifest nonmotor and motor symptoms. Autonomic cardiovascular dysregulation is a common nonmotor manifestation associated with increased morbimortality. Conventional clinical treatment alleviates motor signs but does not change disease progression and fails in handling nonmotor features. Nutrition is a key modifiable determinant of chronic disease. This study aimed to assess the effects of propolis on cardiological features, heart rate (HR) and heart rate variability (HRV) and on nigrostriatal dopaminergic damage, detected by tyrosine hydroxylase (TH) immunoreactivity, in the 6-hydroxydopamine (6-OHDA) rat model of PD. Male Wistar rats were injected bilaterally with 6-OHDA or saline into the striatum and were treated with propolis or water for 40 days. Autonomic function was assessed by time domain parameters (standard deviation of all normal-to-normal intervals (SDNN) and square root of the mean of the squared differences between adjacent normal RR intervals (RMSSD)) of HRV calculated from electrocardiogram recordings. Reductions in HR (p = 1.47 × 10−19), SDNN (p = 3.42 × 10−10) and RMSSD (p = 8.2 × 10−6) detected in parkinsonian rats were reverted by propolis. Propolis attenuated neuronal loss in the substantia nigra (p = 5.66 × 10−15) and reduced striatal fiber degeneration (p = 7.4 × 10−5) in 6-OHDA-injured rats, which also showed significant weight gain (p = 1.07 × 10−5) in comparison to 6-OHDA-lesioned counterparts. Propolis confers cardioprotection and neuroprotection in the 6-OHDA rat model of PD.


2017 ◽  
Vol 242 (18) ◽  
pp. 1757-1764 ◽  
Author(s):  
Lijiao Geng ◽  
Wei Liu ◽  
Yong Chen

Ample evidence has demonstrated the involvement of microRNAs in Parkinson’s disease pathogenesis. miR-124-3p was reported to be able to improve neural functional recovery. However, the underlying mechanism of miR-124-3p in Parkinson’s disease progression was not well established. This study was designed to investigate the role of miR-124-3p in methyl phenyl pyridinium iodide (MPP)+-induced SH-SY5Y cells, an in vitro Parkinson’s disease model. It is observed that miR-124-3p expression was decreased, and STAT3 expression was increased in MPP+-induced SH-SY5Y cells. miR-124-3p overexpression attenuated MPP+-induced neuronal injury, displayed as increased cell viability and superoxide dismutase activities, as well as reduced cell apoptosis, Caspase-3 activity, lactate dehydrogenase activity, inflammatory factors TNF-α, and IL-1β levels and reactive oxygen species generation. Moreover, STAT3 was confirmed to be a miR-124-3p target. Restored STAT3 expression reversed miR-124-3p-induced neuroprotective effects against MPP+-mediated neuronal injury. These data demonstrated that miR-124-3p contributed to neuroprotective effects in MPP+-induced Parkinson’s disease cell model by targeting STAT3. Impact statement PD affects millions of people in the world, causing uncontrolled tremors. MicroRNAs, a class of endogenous single-stranded non-coding transcript with approximately 22 nucleotides, could bind to the 3″ UTR of their targets. The functional action of miR-124-3p in PD was not fully elucidated. Our study found that ectopic expression miR-124-3p attenuated MPP+-induced injury in PD model in vitro by suppressing neurotoxicity, neuronal apoptosis, neuroinflammation, and oxidative stress. Moreover, we validated that miR-124-3p could bind to STAT3 mediating the neuroprotective effect of miR-124-3p. We believe this study will be interesting for readers of this area.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hefeng Zhou ◽  
Min Shao ◽  
Xuanjun Yang ◽  
Chuwen Li ◽  
Guozhen Cui ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and there is no cure for it at present. We have previously reported that the tetramethylpyrazine (TMP) derivative T-006 exhibited beneficial effects in Alzheimer’s disease (AD) models. However, its effect on PD remains unclear. In the present study, we investigated the neuroprotective effects and underlying mechanisms of T-006 against 6-hydroxydopamine- (6-OHDA-) induced lesions in in vivo and in vitro PD models. Our results demonstrated that T-006 alleviated mitochondrial membrane potential loss and restored the energy metabolism and mitochondrial biogenesis that were induced by 6-OHDA in PC12 cells. In addition, animal experiments showed that administration of T-006 significantly attenuated the 6-OHDA-induced loss of tyrosine hydroxylase- (TH-) positive neurons in the SNpc, as well as dopaminergic nerve fibers in the striatum, and also increased the concentration of dopamine and its metabolites (DOPAC, HVA) in the striatum. Functional deficits were restored following T-006 treatment in 6-OHDA-lesioned mice, as demonstrated by improved motor coordination and rotational behavior. In addition, we found that the neuroprotective effects of T-006 were mediated, at least in part, by the activation of both the PKA/Akt/GSK-3β and CREB/PGC-1α/NRF-1/TFAM pathways. In summary, our findings demonstrate that T-006 could be developed as a novel neuroprotective agent for PD, and the two pathways might be promising therapeutic targets for PD.


Sign in / Sign up

Export Citation Format

Share Document