scholarly journals Cholesterol and triglyceride levels in first-episode psychosis: systematic review and meta-analysis

2017 ◽  
Vol 211 (6) ◽  
pp. 339-349 ◽  
Author(s):  
Toby Pillinger ◽  
Katherine Beck ◽  
Brendon Stubbs ◽  
Oliver D. Howes

BackgroundThe extent of metabolic and lipid changes in first-episode psychosis (FEP) is unclear.AimsTo investigate whether individuals with FEP and no or minimal antipsychotic exposure show lipid and adipocytokine abnormalities compared with healthy controls.MethodWe conducted a meta-analysis of studies examining lipid and adipocytokine parameters in individuals with FEP and no or minimal antipsychotic exposurev.a healthy control group. Studies reported fasting total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and leptin levels.ResultsOf 2070 citations retrieved, 20 case–control studies met inclusion criteria including 1167 patients and 1184 controls. Total cholesterol and LDL cholesterol levels were significantly decreased in patientsv.controls, corresponding to an absolute reduction of 0.26mmol/L and 0.15mmol/L respectively. Triglyceride levels were significantly increased in the patient group, corresponding to an absolute increase of 0.08 mmol/L However, HDL cholesterol and leptin levels were not altered in patientsv.controls.ConclusionsTotal and LDL cholesterol levels are reduced in FEP, indicating that hypercholesterolaemia in patients with chronic disorder is secondary and potentially modifiable. In contrast, triglycerides are elevated in FEP. Hypertriglyceridaemia is a feature of type 2 diabetes mellitus, therefore this finding adds to the evidence for glucose dysregulation in this cohort. These findings support early intervention targeting nutrition, physical activity and appropriate antipsychotic prescription.

2022 ◽  
pp. 1-7
Author(s):  
Toby Pillinger ◽  
Robert A. McCutcheon ◽  
Oliver D. Howes

Abstract Background First-episode psychosis (FEP) is associated with metabolic alterations. However, it is not known if there is heterogeneity in these alterations beyond what might be expected due to normal individual differences, indicative of subgroups of patients at greater vulnerability to metabolic dysregulation. Methods We employed meta-analysis of variance, indexed using the coefficient of variation ratio (CVR), to compare variability of the following metabolic parameters in antipsychotic naïve FEP and controls: fasting glucose, glucose post-oral glucose tolerance test (OGTT), fasting insulin, insulin resistance, haemoglobin A1c (HbA1c), total-cholesterol, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol, and triglycerides. Standardised mean difference in metabolic parameters between groups was also calculated; meta-regression analyses examined physiological/demographic/psychopathological moderators of metabolic change. Results Twenty-eight studies were analysed (1716 patients, 1893 controls). Variability of fasting glucose [CVR = 1.32; 95% confidence interval (CI) 1.12–1.55; p = 0.001], glucose post-OGTT (CVR = 1.43; 95% CI 1.10–1.87; p = 0.008), fasting insulin (CVR = 1.31; 95% CI 1.09–1.58; p = 0.01), insulin resistance (CVR = 1.34; 95% CI 1.12–1.60; p = 0.001), HbA1c (CVR = 1.18; 95% CI 1.06–1.27; p < 0.0001), total-cholesterol (CVR = 1.15; 95% CI 1.01–1.31; p = 0.03), LDL-cholesterol (CVR = 1.28; 95% CI 1.09–1.50; p = 0.002), and HDL-cholesterol (CVR = 1.15; 95% CI 1.00–1.31; p < 0.05), but not triglycerides, was greater in patients than controls. Mean glucose, glucose post-OGTT, fasting insulin, insulin resistance, and triglycerides were greater in patients; mean total-cholesterol and HDL-cholesterol were reduced in patients. Increased symptom severity and female sex were associated with worse metabolic outcomes. Conclusions Patients with FEP present with greater variability in metabolic parameters relative to controls, consistent with a subgroup of patients with more severe metabolic changes compared to others. Understanding determinants of metabolic variability could help identify patients at-risk of developing metabolic syndrome. Female sex and severe psychopathology are associated with poorer metabolic outcomes, with implications for metabolic monitoring in clinical practice.


Author(s):  
Nela Maksimovic ◽  
Vanja Vidovic ◽  
Tatjana Damnjanovic ◽  
Biljana Jekic ◽  
Nada Majkic Singh ◽  
...  

IntroductionPositive regulatory domain containing 16 (PRDM16) protein represents the key regulator of brown adipose tissue (BAT) development. It induces brown fat phenotype and represses white adipose tissue specific genes through the association with C-terminal binding co-repressor proteins (CtBP1 and CtBP2). In healthy adults presence of BAT has been associated with lower glucose, total cholesterol and LDL (low-density lipoprotein) cholesterol levels. Our aim was to analyze the association of PRDM16 gene (rs12409277) and CtBP2 gene (rs1561589) polymorphisms with body mass index (BMI), fasting glucose level and lipid profile of adolescents.Material and methodsOur study included 295 healthy school children, 145 boys (49.2%) and 150 girls (50.8%), 15 years of age. Genotypes for the selected polymorphisms were detected by the real-time PCR method. Age, gender, height, weight, lipid profile (total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides) and fasting glucose levels were recorded.ResultsWe did not find a statistically significant association of rs12409277 and rs1561589 polymorphisms with BMI, fasting glucose and lipid profile of adolescents. We further analyzed the combined effect of the two SNPs and the statistical analysis showed that carriers of CT genotype of rs12409277 polymorphism and GG genotype of rs1561589 polymorphism had significantly lower total cholesterol (p = 0.001) and LDL cholesterol (p = 0.008) levels compared to all other groups of genotypes.ConclusionsOur study suggests that rs12409277 and rs1561589 polymorphism might have an influence on total and LDL cholesterol levels in adolescents. Larger studies should be performed in order to confirm our results.


2021 ◽  
pp. 1966-1970
Author(s):  
Widiyanto Widiyanto ◽  
Mulyono Mulyono ◽  
Sutrisno Sutrisno ◽  
Eko Pangestu ◽  
Marry Christiyanto ◽  
...  

Background and Aim: Healthy goat meat is an essential aspect in increasing consumer acceptance for this livestock product. The research aimed to examine the effect of goat meat containing low cholesterol and rich omega-6 fatty acid on the performance and blood lipid status of white rats (Rattus norvegicus). Materials and Methods: Thirty 2-month-old male white rats (R. norvegicus) weighing 195-230 g were randomly divided into three groups, with each group consisting of 10 rats. Group I was treated with a control feed (T0; BR I concentrate). Group II (T1) was treated with a mixed feed containing 50% control feed and 50% goat meat. Group III (T2) was treated with a mixed feed comprising 50% control feed and 50% goat meat with low cholesterol and rich omega-6 fatty acids. Each treatment was given ad libitum for 30 days. The variables measured were dry matter and organic matter consumption, daily body weight gain, feed conversion, triglyceride levels, total cholesterol, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, and atherogenic index (AI). The data were analyzed statistically using analysis of variance in a completely randomized design. Results: The total, HDL, and LDL cholesterol levels at T0, T1, and T2 were as follows: 99.97, 35.97, and 50.43 mg/dL (total cholesterol); 108.35, 33.92, and 58.17 mg/dL (HDL cholesterol); and 101.43, 38.09, and 48.65 mg/dL (LDL cholesterol). The highest HDL and the lowest LDL cholesterol levels (p<0.05) were observed in the T2 treatment group, which had the lowest AI (1.69 vs. 1.77 and 2.19). Conclusion: The consumption of goat with low cholesterol and rich omega-6 fatty acids reduces the total cholesterol and LDL cholesterol, raises the HDL cholesterol levels, and decreases the AI.


PEDIATRICS ◽  
1990 ◽  
Vol 85 (2) ◽  
pp. 155-158
Author(s):  
Wendy Y. Craig ◽  
Glenn E. Palomaki ◽  
A. Myron Johnson ◽  
James E. Haddow

In this meta-analysis it was demonstrated that, when compared with nonsmokers of similar age, smokers in the 8- to 19-year-old age group have significantly higher serum levels of triglyceride (+11.8%), very-low-density lipoprotein (VLDL)-cholesterol (+12.4%) and low-density lipoprotein (LDL)-cholesterol (+4.1%) and significantly lower serum levels of high-density lipoprotein (HDL)-cholesterol (-8.5%) and total cholesterol (-3.7%). All of these smoking-associated changes are in the same direction as those found in adults, with the exception of total cholesterol levels, which are significantly increased in adult smokers. The extent to which mean triglyceride, LDL-cholesterol, and HDL-choles-terol levels are shifted is significantly greater in the 8-to 19-year-old smokers than in adult smokers. The changes in mean total cholesterol levels among smokers in both age groups represent only the net shifts in the lipoprotein fractions and are therefore likely to be a less sensitive indicator of the possible lipid-related excess coronary artery disease risk in smokers.


1981 ◽  
Vol 60 (1) ◽  
pp. 81-86 ◽  
Author(s):  
V. J. Wass ◽  
R. J. Jarrett ◽  
V. Meilton ◽  
M. K. Start ◽  
M. Mattock ◽  
...  

1. Changes in serum total and lipoprotein fraction triglyceride and cholesterol levels were studied in 24 adults on home haemodialysis. Half the patients were randomly allocated to a low cholesterol (mean 200 mg/day), fat-modified diet (mean polyunsaturated/saturated fat ratio of 1.0 with a mean of 43% of the total energy content derived from fat). 2. Before dietary manipulation, triglyceride levels in all lipoprotein fractions were significantly higher (P < 0.02) than in a control group of age and sex matched normal subjects. Total cholesterol, very-low-density-lipoprotein (VLDL) and low-density-lipoprotein (LDL) cholesterol were also significantly raised (P < 0.02), but high-density-lipoprotein (HDL) cholesterol was normal. In the patients on a fat-modified diet triglyceride levels did not alter in any of the lipoprotein fractions. Total cholesterol and LDL cholesterol levels fell significantly into the normal range (P < 0.002 and < 0.001 respectively) but VLDL and HDL cholesterol levels did not change. 3. Hypertriglyceridaemia is the most common lipid abnormality in patients with renal failure and a long-term fat-modified diet is, therefore, of limited therapeutic importance in these patients unless there is a low HDL/LDL cholesterol ratio.


2019 ◽  
Vol 77 (12) ◽  
pp. 890-902 ◽  
Author(s):  
Daniel T Dibaba

Abstract Context Vitamin D deficiency is highly prevalent across the world. The existing evidence suggests vitamin D may have beneficial effects on serum lipid profiles and thus cardiovascular health. Objective The objective of this systematic review and meta-analysis was to examine the effect of vitamin D supplementation on serum lipid profiles. Data Source Original randomized controlled trials (RCTs) examining the effect of vitamin D supplementation on serum lipid profiles and published before July 2018 were identified by searching online databases, including PubMed, Google Scholar, and ScienceDirect, using a combination of relevant keywords. Data Extraction Data on study characteristics, effect size, measure of variation, type of vitamin D supplementation, and duration of follow-up were extracted by the author. Data Analysis PRISMA guidelines for systematic reviews were followed. Random effects (DerSimonian and Laird [D-V)] models were used to pool standardized mean differences in total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides between the active and the placebo arms of RCT studies. Between-study heterogeneities were assessed using Cochrane Q and I2, and publication bias was assessed using Begg’s test, Egger’s test, and funnel plot. Results A total of 41 RCTs comprising 3434 participants (n = 1699 in the vitamin D supplementation arm and n = 1735 in the placebo arm) were identified and included in the meta-analysis. Approximately 63.4% of study participants were women, with 14 studies conducted entirely among women. Approximately 24% of the trials had follow-up duration >6 months, whereas the remaining 76% had follow-up duration of <6 months. The standardized mean differences (SMDs) and 95% confidence intervals (CIs) for comparing the change from baseline to follow-up between the vitamin D supplementation arm and the placebo (control) arm were as follows: total cholesterol = –0.17 (–0.28 to –0.06); LDL cholesterol = –0.12 (–0.23 to –0.01); triglycerides = –0.12 (–0.25 to 0.01); and HDL cholesterol = –0.19 (–0.44 to 0.06). After removing a trial that was an outlier based on the magnitude of the effect size, the SMD for triglycerides was –0.15 (–0.24 to –0.06) and that for HDL cholesterol was –0.10 (–0.28 to 0.09). The improvements in total cholesterol and triglycerides were more pronounced in participants with baseline vitamin D deficiency. Conclusions Vitamin D supplementation appeared to have a beneficial effect on reducing serum total cholesterol, LDL cholesterol, and triglyceride levels but not HDL cholesterol levels. Vitamin D supplementation may be useful in hypercholesterolemia patients with vitamin D insufficiency who are at high risk of cardiovascular diseases.


2019 ◽  
Vol 25 (28) ◽  
pp. 3087-3095 ◽  
Author(s):  
Wenfang Guo ◽  
Xue Gong ◽  
Minhui Li

Background: The lipid profile is associated with metabolic diseases in overweight and obese individuals. Quercetin treatment is suggested to reduce the risk factors for obesity. Objective: The aim of the literature meta-analysis was to determine the range of doses of quercetin administration on plasma lipid levels in overweight and obese human subjects. Methods: Articles searched on EMBASE, PubMed, Cochrane Library, and Web of Science through March 20, 2019, were reviewed independently using predetermined selection criteria. The Cochrane collaboration’s tool for assessing risk of bias was used to assess the quality of the included trials. Heterogeneity was measured using Cochran's Q test and the I-square (I2) statistic. Data were pooled using a random-effects model and the standardized mean difference (SMD) was considered for measuring the overall effect size. Results: Of 176 articles reviewed, 9 randomized clinical trials were selected based on the inclusion criteria. The pooled results for the effect of quercetin administration on LDL-cholesterol (SMD: -002; 95% CI: -0.15–0.11), HDL-cholesterol (SMD: -0.06; 95% CI: -0.19–0.07), triglycerides (SMD: 0.05; 95% CI: -0.08–0.18), and total cholesterol (SMD: 0.04; 95% CI: -0.09–0.17) were not significantly different from the control group results. Quercetin administration at doses of ≥250 mg/day (SMD: -0.58 ; 95% CI: -0.94–-0.22) and total dose ≥14,000 mg (SMD: -0.58 ; 95% CI: -0.94–-0.22) significantly reduced LDL levels; however, HDL-cholesterol, triglycerides, and total cholesterol levels remained unchanged (p > 0.05). Conclusion: Quercetin administration does not affect plasma lipid levels in overweight and obese individuals. However, it significantly reduces LDL-cholesterol levels at doses of ≥250 mg/day and total dose ≥14000 mg.


2020 ◽  
Vol 27 ◽  
Author(s):  
Peyman Nowrouzi-Sohrabi ◽  
Reza Tabrizi ◽  
Mohammad Jalali ◽  
Navid Jamali ◽  
Shahla Rezaei ◽  
...  

Introduction: A systematic review and meta-analysis of clinical trials was undertaken to evaluate the effect of diacerein intake on cardiometabolic profiles in patients with type 2 diabetes mellitus (T2DM). Methods: Electronic databases such as PubMed, EMBASE, Scopus, Web of Science, Google Scholar, and Cochrane Central Register of Controlled Trials were searched from inception to 31 July 2019. Statistical heterogeneity was evaluated using Cochran’s Q test and I-square (I2 ) statistic. Data were pooled using random-effect models and weighted mean difference (WMD). Results: From 1,733 citations, seven clinical trials were eligible for inclusion and meta-analysis. A significant reduction in hemoglobin A1c (HbA1c) (WMD -0.73; 95%CI -1.25 to -0.21; P= 0.006; I2 = 72.2%) and body mass index (BMI) (WMD -0.55; 95%CI -1.03 to -0.07; P= 0.026; I2 = 9.5%) were identified. However, no significant effect of diacerein intake was identified on fasting blood sugar (FBS) (WMD - 9.00; 95%CI -22.57 to 4.57; P= 0.194; I2 = 60.5%), homeostatic model assessment for insulin resistance (HOMA-IR) (WMD 0.39; 95%CI 0.95 to 1.73; P= 0.569; I2 = 2.2%), body weight (WMD -0.54; 95%CI -1.10 to 0.02; P= 0.059), triglycerides (WMD -0.56; 95%CI -24.16 to 23.03; P= 0.963; I2 = 0.0%), total-cholesterol (WMD -0.21; 95%CI -12.19 to 11.78; P= 0.973; I2 = 0.0%), HDL-cholesterol (WMD -0.96; 95%CI -2.85 to 0.93; P= 0.321; I2 = 0.0%), and LDL-cholesterol levels (WMD -0.09; 95%CI -8.43 to 8.25; P= 0.983; I2 = 37.8%). Conclusion: Diacerein intake may reduce HbA1c and BMI; however, no evidence of effect was observed for FBS, HOMA-IR, body weight, triglycerides, total-cholesterol, HDL-cholesterol or LDL-cholesterol.


2019 ◽  
Vol 25 (30) ◽  
pp. 3266-3281 ◽  
Author(s):  
Hadis Fathizadeh ◽  
Alireza Milajerdi ◽  
Željko Reiner ◽  
Fariba Kolahdooz ◽  
Maryam Chamani ◽  
...  

Background: The findings of trials investigating the effects of L-carnitine administration on serum lipids are inconsistent. This meta-analysis of randomized controlled trials (RCTs) was performed to summarize the effects of L-carnitine intake on serum lipids in patients and healthy individuals. Methods: Two authors independently searched electronic databases including MEDLINE, EMBASE, Cochrane Library, Web of Science, PubMed and Google Scholar from 1990 until August 1, 2019, in order to find relevant RCTs. The quality of selected RCTs was evaluated using the Cochrane Collaboration risk of bias tool. Cochrane’s Q test and I-square (I2) statistic were used to determine the heterogeneity across included trials. Weight mean difference (SMD) and 95% CI between the two intervention groups were used to determine pooled effect sizes. Subgroup analyses were performed to evaluate the source of heterogeneity based on suspected variables such as, participant’s health conditions, age, dosage of L-carnitine, duration of study, sample size, and study location between primary RCTs. Results: Out of 3460 potential papers selected based on keywords search, 67 studies met the inclusion criteria and were eligible for the meta-analysis. The pooled results indicated that L-carnitine administration led to a significant decrease in triglycerides (WMD: -10.35; 95% CI: -16.43, -4.27), total cholesterol (WMD: -9.47; 95% CI: - 13.23, -5.70) and LDL-cholesterol (LDL-C) concentrations (WMD: -6.25; 95% CI: -9.30, -3.21), and a significant increase in HDL-cholesterol (HDL-C) levels (WMD: 1.39; 95% CI: 0.21, 2.57). L-carnitine supplementation did not influence VLDL-cholesterol concentrations. When we stratified studies for the predefined factors such as dosage, and age, no significant effects of the intervention on triglycerides, LDL-C, and HDL-C levels were found. Conclusion: This meta-analysis demonstrated that L-carnitine administration significantly reduced triglycerides, total cholesterol and LDL-cholesterol levels, and significantly increased HDL-cholesterol levels in the pooled analyses, but did not affect VLDL-cholesterol levels; however, these findings were not confirmed in our subgroup analyses by participant’s health conditions, age, dosage of L-carnitine, duration of study, sample size, and study location.


Sign in / Sign up

Export Citation Format

Share Document