scholarly journals Efficacy of Neoadjuvant Cisplatin in Triple-Negative Breast Cancer

2010 ◽  
Vol 28 (7) ◽  
pp. 1145-1153 ◽  
Author(s):  
Daniel P. Silver ◽  
Andrea L. Richardson ◽  
Aron C. Eklund ◽  
Zhigang C. Wang ◽  
Zoltan Szallasi ◽  
...  

Purpose Cisplatin is a chemotherapeutic agent not used routinely for breast cancer treatment. As a DNA cross-linking agent, cisplatin may be effective treatment for hereditary BRCA1-mutated breast cancers. Because sporadic triple-negative breast cancer (TNBC) and BRCA1-associated breast cancer share features suggesting common pathogenesis, we conducted a neoadjuvant trial of cisplatin in TNBC and explored specific biomarkers to identify predictors of response. Patients and Methods Twenty-eight women with stage II or III breast cancers lacking estrogen and progesterone receptors and HER2/Neu (TNBC) were enrolled and treated with four cycles of cisplatin at 75 mg/m2 every 21 days. After definitive surgery, patients received standard adjuvant chemotherapy and radiation therapy per their treating physicians. Clinical and pathologic treatment response were assessed, and pretreatment tumor samples were evaluated for selected biomarkers. Results Six (22%) of 28 patients achieved pathologic complete responses, including both patients with BRCA1 germline mutations;18 (64%) patients had a clinical complete or partial response. Fourteen (50%) patients showed good pathologic responses (Miller-Payne score of 3, 4, or 5), 10 had minor responses (Miller-Payne score of 1 or 2), and four (14%) progressed. All TNBCs clustered with reference basal-like tumors by hierarchical clustering. Factors associated with good cisplatin response include young age (P = .001), low BRCA1 mRNA expression (P = .03), BRCA1 promoter methylation (P = .04), p53 nonsense or frameshift mutations (P = .01), and a gene expression signature of E2F3 activation (P = .03). Conclusion Single-agent cisplatin induced response in a subset of patients with TNBC. Decreased BRCA1 expression may identify subsets of TNBCs that are cisplatin sensitive. Other biomarkers show promise in predicting cisplatin response.

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Ayca Gucalp ◽  
Tiffany A. Traina

Triple-negative breast cancer (TNBC), a subtype distinguished by negative immunohistochemical assays for expression of the estrogen and progesterone receptors (ER/PR) and human epidermal growth factor receptor-2(HER2) represents 15% of all breast cancers. Patients with TNBC generally experience a more aggressive clinical course with increased risk of disease progression and poorer overall survival. Furthermore, this subtype accounts for a disproportionate number of disease-related mortality in part due to its aggressive natural history and our lack of effective targeted agents beyond conventional cytotoxic chemotherapy. In this paper, we will review the epidemiology, risk factors, prognosis, and the molecular and clinicopathologic features that distinguish TNBC from other subtypes of breast cancer. In addition, we will examine the available data for the use of cytotoxic chemotherapy in the treatment of TNBC in both the neoadjuvant and adjuvant setting and explore the ongoing development of newer targeted agents.


2014 ◽  
Vol 10 (01) ◽  
pp. 35 ◽  
Author(s):  
Bernardo L Rapoport ◽  
Simon Nayler ◽  
Georgia S Demetriou ◽  
Shun D Moodley ◽  
Carol A Benn ◽  
...  

Triple negative breast cancer (TNBC) comprises 12–20 % of all breast cancers and are a heterogeneous group of tumours, both clinically and pathologically. These cancers are characterised by the lack of expression of the hormone receptors oestrogen receptor (OR) and progesterone receptor (PR), combined with the lack of either overexpression or amplification of the human epidermal growth factor receptor-2 (HER2) gene. Conventional cytotoxic chemotherapy and DNA damaging agents continue to be the mainstay of treatment of this disease in the neoadjuvant, adjuvant and metastatic setting. The lack of predictive markers in identifying potential targets for the treatment of TNBC has left a gap in directed therapy in these patients. Platinum agents have seen renewed interest in TNBC based on an increasing body of preclinical and clinical data suggesting encouraging activity. However, comparisons between chemotherapy regimens are mostly retrospective in nature and the best agents or drug combinations for TNBC have not been established in prospective randomised trials. Numerous studies have now shown that TNBC has significantly higher pathological complete response (pCR) rates compared with hormone receptor positive breast cancer when treated with neoadjuvant chemotherapy, and pCR correlates well with better outcomes for these patients. Patients with TNBC account for a larger number of deaths in the setting of metastatic breast cancer. There is no preferred treatment for the first-line metastatic setting. Although individual agents are recommended, given the often aggressive nature of TNBC and the presence of extensive visceral disease, the use of a combination of drugs, rather than a single agent, is often advocated. This review article will outline the pathological diagnosis of TNBC and the treatment options available to these patients in the neoadjuvant, adjuvant and metastatic setting, including an assessment of future directions of treatment.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. TPS1109-TPS1109
Author(s):  
Jami Aya Fukui ◽  
Charles L. Shapiro ◽  
Meng Ru ◽  
Paula Klein ◽  
Julie Fasano ◽  
...  

TPS1109 Background: Triple negative breast cancer (TNBC) is an aggressive disease with unmet clinical needs. Women with TNBC tend to be younger and demonstrate early recurrence, higher histological grade, higher rate of visceral metastasis and increased mortality rates when compared to hormone positive breast cancer. Prognosis for metastatic TNBC is especially poor. Due to lack of targeted therapies, there is no standard treatment of choice for triple negative breast cancer and chemotherapy remains the accepted standard. Many chemotherapeutic agents have been reported to have clinical activity either as single agent or in combination. Seventy percent of breast cancers with BRCA-1 germline mutations are triple negative, which suggests a shared carcinogenic pathway between them. In preoperative and metastatic settings, both TNBC and BRCA-1 associated breast cancers are particularly sensitive to DNA cross-linking agents such as platinum compounds due to defective DNA repair by homologous recombination. The recent TNT trial showed in patients with triple negative metastatic or recurrent locally advanced breast cancer with BRCA1/2 mutations, carboplatin resulted in a significantly higher overall response rate versus docetaxel (68% versus 33.3%; p=0.03). Triple negative breast cancers are associated with a high frequency of PTEN loss, which leads to mTOR activation. Moreover, it has been reported that mTOR activation may confer resistance to platinum agents such as cisplatin, a phenomenon that may be reversible by the addition of an mTOR inhibitor such as everolimus. There are reports of synergy between mTOR inhibitors and platinum compounds in pre-clinical and clinical data. Methods: We have opened a multi-centered randomized phase II trial comparing carboplatin AUC 4 q 3 weeks vs carboplatin AUC 4 q 3 weeks combined with daily 5 mg everolimus. 41 of planned 72 patients from the Mount Sinai Health System have been enrolled and are randomized in a 2:1 allocation. The primary objective is to compare progression-free survival in patients treated with carboplatin+everolimus to patients treated with carboplatin alone. Patients may have had up to 3 prior regimens for metastatic disease. Exploratory biomarker assessment is being done to identify markers of response. Clinical trial information: NCT02531932.


2011 ◽  
Vol 17 (21) ◽  
pp. 6905-6913 ◽  
Author(s):  
Richard S. Finn ◽  
Carmelo Bengala ◽  
Nuhad Ibrahim ◽  
Henri Roché ◽  
Joseph Sparano ◽  
...  

2014 ◽  
Vol 17 (3) ◽  
pp. 439 ◽  
Author(s):  
Wayne Goh ◽  
Inna Sleptsova-Freidrich ◽  
Nenad Petrovic

PURPOSE: Triple negative breast cancers (estrogen, progesterone and human epidermal growth factor 2 (HER2) receptor-negative) are among the most aggressive forms of cancers with limited treatment options. Doxorubicin is one of the agents found in many of the current cancer treatment protocols, although its use is limited by dose-dependent cardiotoxicity. This work investigates one of the ways to suppress cancer growth by inhibiting tumor cell ability to remove acid accumulated during its metabolism by proton pump inhibitor esomeprazole (a drug with extensive clinical use) which could serve as an addition to doxorubicin therapy. METHODS: In this work, we have investigated growth suppression of triple-negative breast cancer cells MDA-MB-468 by esomeprazole and doxorubicin by trypan blue exclusion assay. Measurement of acidification of treated cancer cells was performed using intracellular pH-sensitive probe, BCECF-AM. Finally, expression of gastric type proton pump (H+/K+ ATPase, a target for esomeprazole) on MDA-MB-468 cells was detected by immunofluorescence and Western blotting. RESULTS: We have found that esomeprazole suppresses growth of triple-negative breast cancer cell in vitro in a dose-dependent manner through increase in their intracellular acidification. In contrast, esomeprazole did not have significant effect on non-cancerous breast epithelial MCF-10A cells. Esomeprazole increases doxorubicin effects suggesting that dual treatments might be possible. In addition, response of MDA-MB-468 cells to esomeprazole could be mediated by gastric type proton pump (H+/K+ ATPase) in cancer cells contrary to previous beliefs that this proton pump expression is restricted to parietal cells of the stomach epithelia. CONCLUSION: This study provides first evidence that adjunct use of esomeprazole in breast cancer treatment might be a possible to combat adverse effects of doxorubicin and increase its effectiveness. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 259
Author(s):  
Madhuchhanda Kundu ◽  
Sumita Raha ◽  
Avik Roy ◽  
Kalipada Pahan

Although some therapies are available for regular breast cancers, there are very few options for triple-negative breast cancer (TNBC). Here, we demonstrated that serum level of IL-12p40 monomer (p40) was much higher in breast cancer patients than healthy controls. On the other hand, levels of IL-12, IL-23 and p40 homodimer (p402) were lower in serum of breast cancer patients as compared to healthy controls. Similarly, human TNBC cells produced greater level of p40 than p402. The level of p40 was also larger than p402 in serum of a patient-derived xenograft (PDX) mouse model. Accordingly, neutralization of p40 by p40 mAb induced death of human TNBC cells and tumor shrinkage in PDX mice. While investigating the mechanism, we found that neutralization of p40 led to upregulation of human CD4+IFNγ+ and CD8+IFNγ+ T cell populations, thereby increasing the level of human IFNγ and decreasing the level of human IL-10 in PDX mice. Finally, we demonstrated the infiltration of human cytotoxic T cells, switching of tumor-associated macrophage M2 (TAM2) to TAM1 and suppression of transforming growth factor β (TGFβ) in tumor tissues of p40 mAb-treated PDX mice. Our studies identify a possible new immunotherapy for TNBC in which p40 mAb inhibits tumor growth in PDX mice.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 5009
Author(s):  
Swetha Vasudevan ◽  
Ibukun A. Adejumobi ◽  
Heba Alkhatib ◽  
Sangita Roy Chowdhury ◽  
Shira Stefansky ◽  
...  

Triple-negative breast cancer (TNBC) is an aggressive subgroup of breast cancers which is treated mainly with chemotherapy and radiotherapy. Epidermal growth factor receptor (EGFR) was considered to be frequently expressed in TNBC, and therefore was suggested as a therapeutic target. However, clinical trials of EGFR inhibitors have failed. In this study, we examine the relationship between the patient-specific TNBC network structures and possible mechanisms of resistance to anti-EGFR therapy. Using an information-theoretical analysis of 747 breast tumors from the TCGA dataset, we resolved individualized protein network structures, namely patient-specific signaling signatures (PaSSS) for each tumor. Each PaSSS was characterized by a set of 1–4 altered protein–protein subnetworks. Thirty-one percent of TNBC PaSSSs were found to harbor EGFR as a part of the network and were predicted to benefit from anti-EGFR therapy as long as it is combined with anti-estrogen receptor (ER) therapy. Using a series of single-cell experiments, followed by in vivo support, we show that drug combinations which are not tailored accurately to each PaSSS may generate evolutionary pressure in malignancies leading to an expansion of the previously undetected or untargeted subpopulations, such as ER+ populations. This corresponds to the PaSSS-based predictions suggesting to incorporate anti-ER drugs in certain anti-TNBC treatments. These findings highlight the need to tailor anti-TNBC targeted therapy to each PaSSS to prevent diverse evolutions of TNBC tumors and drug resistance development.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4139
Author(s):  
Pere Llinàs-Arias ◽  
Sandra Íñiguez-Muñoz ◽  
Kelly McCann ◽  
Leonie Voorwerk ◽  
Javier I. J. Orozco ◽  
...  

Triple-negative breast cancer (TNBC) is defined by the absence of estrogen receptor and progesterone receptor and human epidermal growth factor receptor 2 (HER2) overexpression. This malignancy, representing 15–20% of breast cancers, is a clinical challenge due to the lack of targeted treatments, higher intrinsic aggressiveness, and worse outcomes than other breast cancer subtypes. Immune checkpoint inhibitors have shown promising efficacy for early-stage and advanced TNBC, but this seems limited to a subgroup of patients. Understanding the underlying mechanisms that determine immunotherapy efficiency is essential to identifying which TNBC patients will respond to immunotherapy-based treatments and help to develop new therapeutic strategies. Emerging evidence supports that epigenetic alterations, including aberrant chromatin architecture conformation and the modulation of gene regulatory elements, are critical mechanisms for immune escape. These alterations are particularly interesting since they can be reverted through the inhibition of epigenetic regulators. For that reason, several recent studies suggest that the combination of epigenetic drugs and immunotherapeutic agents can boost anticancer immune responses. In this review, we focused on the contribution of epigenetics to the crosstalk between immune and cancer cells, its relevance on immunotherapy response in TNBC, and the potential benefits of combined treatments.


2021 ◽  
Vol 1 (3) ◽  
pp. 140-147
Author(s):  
Cynthia Villarreal-Garza ◽  
Ana S. Ferrigno ◽  
Alejandro Aranda-Gutierrez ◽  
Paul H. Frankel ◽  
Nora H. Ruel ◽  
...  

The presence of BRCA pathogenic variants (PV) in triple-negative breast cancer (TNBC) is associated with a distinctive genomic profile that makes the tumor particularly susceptible to DNA-damaging treatments. However, patients with BRCA PVs can develop treatment resistance through the appearance of reversion mutations and restored BRCA expression. As copy-number variants (CNV) could be less susceptible to reversion mutations than point mutations, we hypothesize that carriers of BRCA CNVs may have improved survival after treatment compared with carriers of other BRCA PVs or BRCA wild-type. Women diagnosed with stage I–III TNBC at ≤50 years at a cancer center in Mexico City were screened for BRCA PVs using a recurrent PV assay (HISPANEL; 77% sensitivity). Recurrence-free survival (RFS) and overall survival (OS) were compared according to the mutational status. Among 180 women, 17 (9%) were carriers of BRCA1 ex9–12del CNVs and 26 (14%) of other BRCA PVs. RFS at ten years for the whole cohort was 79.2% [95% confidence interval (CI), 72.3–84.6], with no significant differences according to mutational status. 10-year OS for the entire cohort was 85.3% (95% CI, 78.7–90.0), with BRCA CNV carriers demonstrating numerically superior OS rates other PV carriers and noncarriers (100% vs. 78.6% and 84.7%; log-rank P = 0.037 and P = 0.051, respectively). This study suggests that BRCA1 ex9–12del CNV carriers with TNBC may have a better OS, and supports the hypothesis that the genotype of BRCA PVs may influence survival by limiting treatment resistance mediated by reversion mutations among CNV carriers. Significance: Large CNV BRCA carriers in a cohort of young Mexican patients with TNBC had superior OS rates than carriers of other BRCA pathogenic variants (i.e., small indels or point mutations). We hypothesize that this is due to the resistance of CNVs to reversion mutations mediating resistance to therapy. If validated, these findings have important prognostic and clinical treatment implications for BRCA-associated breast cancers.


Sign in / Sign up

Export Citation Format

Share Document