scholarly journals Host Factors and Cancer Progression: Biobehavioral Signaling Pathways and Interventions

2010 ◽  
Vol 28 (26) ◽  
pp. 4094-4099 ◽  
Author(s):  
Susan K. Lutgendorf ◽  
Anil K. Sood ◽  
Michael H. Antoni

Whereas evidence for the role of psychosocial factors in cancer initiation has been equivocal, support continues to grow for links between psychological factors such as stress, depression, and social isolation and progression of cancer. In vitro, in vivo, and clinical studies show that stress- related processes can impact pathways implicated in cancer progression, including immuno-regulation, angiogenesis, and invasion. Contributions of systemic factors, such as stress hormones to the crosstalk between tumor and stromal cells, appear to be critical in modulating downstream signaling pathways with important implications for disease progression. Inflammatory pathways may also be implicated in fatigue and other factors related to quality of life. Although substantial evidence supports a positive effect of psychosocial interventions on quality of life in cancer, the clinical evidence for efficacy of stress-modulating psychosocial interventions in slowing cancer progression remains inconclusive, and the biobehavioral mechanisms that might explain such effects are still being established. This article reviews research findings to date and outlines future avenues of research in this area.

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1336
Author(s):  
Paola Maroni ◽  
Paola Bendinelli ◽  
Alessandro Fulgenzi ◽  
Anita Ferraretto

Bone metastasis is a serious and often lethal complication of particularly frequent carcinomas, such as breast and prostate cancers, which not only reduces survival but also worsens the patients’ quality of life. Therefore, it is important to find new and/or additional therapeutic possibilities that can counteract the colonization of bone tissue. High adherence to the Mediterranean diet (MD) is effective in the prevention of cancer and improves cancer patients’ health, thus, here, we considered its impact on bone metastasis. We highlighted some molecular events relevant for the development of a metastatic phenotype in cancer cells and the alterations of physiological bone remodeling, which occur during skeleton colonization. We then considered those natural compounds present in MD foods with a recognized role to inhibit or reverse the metastatic process both in in vivo and in vitro systems, and we reported the identified mechanisms of action. The knowledge of this bioactivity by the dietary components of the MD, together with its wide access to all people, could help not only to maintain healthy status but also to improve the quality of life of patients with bone metastases.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 987
Author(s):  
Eric J. O’Neill ◽  
Deborah Termini ◽  
Alexandria Albano ◽  
Evangelia Tsiani

Cancer is a disease characterized by aberrant proliferative and apoptotic signaling pathways, leading to uncontrolled proliferation of cancer cells combined with enhanced survival and evasion of cell death. Current treatment strategies are sometimes ineffective in eradicating more aggressive, metastatic forms of cancer, indicating the need to develop novel therapeutics targeting signaling pathways which are essential for cancer progression. Historically, plant-derived compounds have been utilized in the production of pharmaceuticals and chemotherapeutic compounds for the treatment of cancer, including paclitaxel and docetaxel. Theaflavins, phenolic components present in black tea, have demonstrated anti-cancer potential in cell cultures in vitro and in animal studies in vivo. Theaflavins have been shown to inhibit proliferation, survival, and migration of many cancer cellswhile promoting apoptosis. Treatment with theaflavins has been associated with increased levels of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspases-3, -7, -8, and -9, all markers of apoptosis, and increased expression of the proapoptotic marker Bcl-2-associated X protein (Bax) and concomitant reduction in the antiapoptotic marker B-cell lymphoma 2 (Bcl-2). Additionally, theaflavin treatment reduced phosphorylated Akt, phosphorylated mechanistic target of rapamycin (mTOR), phosphatidylinositol 3-kinase (PI3K), and c-Myc levels with increased expression of the tumour suppressor p53. This review summarizes the current in vitro and in vivo evidence available investigating the anti-cancer effects of theaflavins across various cancer cell lines and animal models.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sareshma Sudhesh Dev ◽  
Syafiq Asnawi Zainal Abidin ◽  
Reyhaneh Farghadani ◽  
Iekhsan Othman ◽  
Rakesh Naidu

Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.


2019 ◽  
Author(s):  
Maxine GB Tran ◽  
Becky AS Bibby ◽  
Lingjian Yang ◽  
Franklin Lo ◽  
Anne Warren ◽  
...  

AbstractAndrogen signaling drives prostate cancer progression and is a therapeutic target. Hypoxia/HIF1a signaling is associated with resistance to hormone therapy and a poor prognosis in patients treated with surgery or radiotherapy. It is not known whether the pathways operate in cooperation or independently. Using LNCaP cells with and without stable transfection of a HIF1a expression vector, we show that combined AR and HIF1a signaling promotes tumor growth in vitro and in vivo, and the capacity of HIF1a to promote tumor growth in the absence of endogenous androgen in vivo. Gene expression analysis identified 7 genes that were upregulated by both androgen and HIF1a. ChIP-Seq analysis showed that the AR and HIF/hypoxia signaling pathways function independently regulating the transcription of different genes with few shared targets. In clinical datasets elevated expression of 5 of the 7 genes was associated with a poor prognosis. Our findings suggest that simultaneous therapeutic inhibition of AR and HIF1a signaling pathways should be explored as a potential therapeutic strategy.


2016 ◽  
Vol 36 (1) ◽  
pp. 165-172 ◽  
Author(s):  
FENG CHEN ◽  
XIAOCHI CHEN ◽  
DEYONG YANG ◽  
XIANGYU CHE ◽  
JIANBO WANG ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Fangxue Zhang ◽  
Xiaowei Huang ◽  
Yuhan Qi ◽  
Zhi Qian ◽  
Shuo Ni ◽  
...  

Bone metabolism is a physiological process that involves both osteoblasts and osteoclasts. Pathological changes of osteoclasts are commonly seen in osteoporosis diseases. Juglanin is a natural compound, reported to have an inhibitory effect on inflammation, oxidative stress and cancer progression. The purpose of this study is to explore the role that Juglanin plays on the osteoclast functions and underlying signaling pathways. In vitro study demonstrated that Juglanin had negative influence on osteoclastic differentiation by suppressing the transcription activity of osteoclastogenesis-related genes and proteins. To determine the underlying mechanism, Western blot was employed to show that Juglanin could significantly have negative effect on the phosphorylation of P50, P65, I-κB, ultimately suppressing the expression and transcriptional activity of nuclear factor of activated T cells (NFATc1). In vivo Juglanin treatment attenuate bone reducing in mice with removed ovary through suppressing osteoclast functioning. Taken together, our study demonstrated that in the molecular mechanism, JUG inhibited the expression of receptor activator of nuclear factor-κ B ligand (RANKL) induced NF - κ B signaling pathway, thus may play a vital part in preventing postmenopausal osteoporosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ming Chang ◽  
Dan Zhu ◽  
Yanjiang Chen ◽  
Weiquan Zhang ◽  
Xi Liu ◽  
...  

Litchi seeds have been traditionally used in Chinese herbal formula for urologic neoplasms including prostate cancer (PCa). However, the effective components of Litchi seeds and the mechanisms of their actions on PCa cell growth and metastasis remain unclear. In this study, we investigated the effects and molecular mechanisms of the Total Flavonoid of Litchi Seed (TFLS) in PCa PC3 and DU145 cell lines. We found that TFLS significantly inhibited the PCa cell proliferation, induced apoptosis, and prevented cell migration and invasion. Furthermore, we observed that TFLS upregulated the expression of epithelial biomarker E-cadherin and downregulated mesenchymal biomarker Vimentin. TFLS also increased the expression of cleaved-PRAP and Bax, and decreased the expression of Bcl-2 in both PC3 and DU145 cells. Besides, TFLS inhibited AKT signaling pathway by reducing the phosphorylation of AKT and activities of downstream signal transducers including mTOR, IκBα and NF-kB. Finally, TFLS treated mice exhibited a significant decrease in tumor size without toxicity in major organs in vivo. These results indicated that TFLS could suppress PCa cell growth in vivo and inhibit PCa cell proliferation and metastasis in vitro through induction of apoptosis and phenotypic reversal of EMT, which may be achieved by inhibiting the AKT/mTOR and NF-κB signaling pathways. Taken together, our data provide new insights into the role of TFLS as a novel potent anti-cancer agent for the treatment of PCa.


2019 ◽  
Vol 26 (7) ◽  
pp. 512-522
Author(s):  
Xian Li ◽  
Long Xia ◽  
Xiaohui Ouyang ◽  
Qimuge Suyila ◽  
Liya Su ◽  
...  

<P>Background: Despite new agent development and short-term benefits in patients with Colorectal Cancer (CRC), metastatic CRC cure rates have not improved due to high rates of oxaliplatin resistance and toxicity. There is an urgent need for effective tools to prevent and treat CRC and reduce morbidity and mortality of CRC patients. Exploring the effects of bioactive peptides on the antitumor to CRC was of vital importance to the clinical application. </P><P> Objective: This study aimed to investigate the therapeutic impact of Anticancer Bioactive Peptides (ACBP) on anticancer effect of oxaliplatin (LOHP) in human colorectal cancer xenografts models in nude mice. </P><P> Methods: HCT-116 cells were cultured in vitro via CCK-8 assays and the absorbance was measured at 450 nm. Apoptosis and cell cycle were assessed by Flow Cytometry (FCM) in vitro. HCT-116 human colorectal cancer cells inoculated subcutaneously in nude mice of treatment with PBS (GG), ACBP, LOHP, ACBP+LOHP (A+L) in vivo. The quality of life was assessed by dietary amount of nude mice, the weight of nude mice, inhibition rates, tumor weight and tumor volume. Immunohistochemistry and RT-qPCR method was conducted to determine the levels of apoptosisregulating proteins/genes in transplanted tumors. </P><P> Results: ACBP induced substantial reductions in viable cell numbers and apoptosis of HCT116 cells in combined with LOHP in vitro. Compared with the control GG group, ACBP combined low dose oxaliplatin (U) group demonstrated significantly different tumor volume, the rate of apoptosis, the expression levels of Cyt-C, caspase-3,8,9 proteins and corresponding RNAs (P<0.05). The expression of pro-apoptotic proteins in the cytoplasm around the nucleus was significantly enhanced by ACBP. Short term intermittent use of ACBP alone indicted a certain inhibitory effect on tumor growth, and improve the quality of life of tumor bearing nude mice. </P><P> Conclusion: ACBP significantly increased the anti-cancer responses of low dose oxaliplatin (L-LOHP), thus, significantly improving the quality of life of tumor-bearing nude mice.</P>


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document