Persistence of microvesicle-induced gene expression changes in murine marrow cells using an in vitro and in vivo model.

2011 ◽  
Vol 29 (15_suppl) ◽  
pp. e21086-e21086
Author(s):  
M. Pereira ◽  
J. M. Aliotta ◽  
A. Amaral ◽  
M. Dooner ◽  
L. Goldberg ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2440-2440
Author(s):  
Nils Heinrich Thoennissen ◽  
Tadayuki Akagi ◽  
Sam Abbassi ◽  
Daniel Nowak ◽  
Ann George ◽  
...  

Abstract CCAAT/enhancer binding protein (C/EBP) transcription factors are involved in a variety of cellular responses including proliferation and differentiation. Although C/EBPβ and C/EBPε are believed to be most important for macrophage and granulocyte activity, respectively, experiments by others and ourselves suggest a possible overlap in their function in myelopoiesis. In order to explore further this potential redundancy, we assessed the in vivo and in vitro function of both transcription factors by generating a double knockout (KO) germline murine model (C/EBPβ/ε−/−/−/−) and compared their hematopoiesis to those of single deficient (C/EBPβ−/−, C/EBPε−/−) and wild-type (WT) mice. Gene expression analysis of bone marrow cells showed expression of C/EBPβ in C/EBPε−/− and WT mice, and vice versa. The weight of the double-KO mice was significantly less as measured at 4 weeks of age (11.5 ± 0.9 g) compared to WT (13.4 ± 0.6 g), C/EBPβ−/− (14.5 ± 1.4 g), and C/EBPε−/− mice (15.4 ± 2.3 g) (p < 0.05). The double-KO mice were prone to infections of the eyes, lungs, liver, and peritoneum. In contrast, C/EBPβ−/−, C/EBPε−/− and WT mice demonstrated no signs of infection. Microscopic imaging of peripheral blood showed metamyelocytes and myelocytes in the double-KO mice. FACS analysis found that the fraction of bone marrow cells which were Lin(−) (no expression of B220, CD3, Gr1, Ter119, and Mac1) were modestly elevated in double-KO and C/EBPβ−/− mice (8.42 % and 8.1 %, respectively) compared to C/EBPε−/− (4.24 %) and WT (3.93 %) mice. A subanalysis highlighted an elevated level of B220(−)/Gr1(−) bone marrow cells in the double-KO mice (54 %) compared to the levels in the C/EBPβ−/− (31 %), C/EBPε−/− (33 %) and WT (21.5 %) mice. Moreover, the proportion of hematopoietic stem cells in the bone marrow were significantly increased in the hematopoietic stem cell compartment [Sca1(+)/c-Kit(+)] in the double-KO mice (20.8 %) compared to the C/EBPβ−/− (6.9 %), C/EBPε−/− (5.9 %) and WT (6.9 %) mice. When given a cytotoxic stress (5-FU) to kill cycling hematopoietic progenitor cells, the mean neutrophil count at their nadir (day 4) was 0.14 × 109 cells/L in the double-KO mice compared to 0.71 × 109 cells/L in the WT mice (p < 0.001); both reached normal values again on day 10. Taken together, these results indicated a relatively higher percentage of immature hematopoietic cells in the double-KO mice compared to the WT mice. Nevertheless, clonogenic assays in methylcellulose using bone marrow cells of the double-KO showed a significant decreased number of myeloid colonies. For example, in the presence of G-CSF, GM-CSF, and SCF, a mean of 83 ± 10 hematopoietic colonies formed in the double-KO mice compared to 135 ± 6 in C/EBPβ−/−, 159 ± 12 in C/EBPε−/− and 165 ± 2 in WT mice (p < 0.001, double-KO vs. WT). Similar clonogenic results occurred when bone marrow cells were stimulated with either G-CSF, GM-CSF or SCF/G-CSF alone. Although our in vitro experiments suggested that double-KO mice had a decreased clonogenic response to G-CSF, their bone marrow cells had normal levels of phosphorylated STAT3 protein when stimulated with G-CSF. Hence, the G-CSFR and its secondary signaling pathway seemed to be intact. In further experiments, downstream targets of the C/EBP transcription factors were examined. Bone marrow macrophages activated with LPS and IFNγ from both double-KO and C/EBPβ−/− mice had decreased gene expression of IL6, IL12p35, TNFα, and G-CSF compared to the levels detected in macrophages of C/EBPε−/− and WT. Interestingly, expression levels of cathelicidin antimicrobial peptide (CAMP) were similarly robust in the macrophages from C/EBPβ−/−, C/EBPε−/−, and WT mice. In sharp contrast, CAMP expression was undetectable in the activated macrophages of the double-KO mice. In conclusion, the phenotype of the double-KO mice was often distinct from the C/EBPβ−/− and C/EBPε−/− mice suggesting a redundancy of activity of both transcription factors in myeloid hematopoiesis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1280-1280
Author(s):  
Vaia Stavropoulou ◽  
Susanne Kaspar ◽  
Laurent Brault ◽  
Sabine Juge ◽  
Stefano Morettini ◽  
...  

Abstract Abstract 1280 Previous studies have shown that the expression of several leukemia-associated mixed lineage leukemia (MLL) fusion genes transformed human and mouse bone marrow cells in vitro and in vivo. In order to dissect the molecular and cellular targets of the MLL-AF9 fusion, we generated a novel inducible doxycycline (DOX)-regulated transgenic mouse model. Conditional ex vivo activation of MLL-AF9 induced aberrant self-renewal and impaired differentiation of long-term or short-term hematopoietic stem (LT-HSC and ST-HSC), common myeloid progenitor (CMP) and granulocyte-macrophage progenitor (GMP) cells in a fully reversible manner. Direct activation of the fusion in vivo or after transplantation of transgenic bone marrow cells into irradiated hosts induced an aggressive and transplantable disease after a median latency of 80days characterized as acute myelo-monocytic leukemia closely mimicking the human disease. Fusion gene expression and leukemia induction was DOX dosage dependent and reversible upon DOX removal. Activation of MLL-AF9 in isolated LT-HSC or GMP cells in vitro or in vivo resulted in the accumulation of immature blast-like cells with similar immunophenotypes. However, MLL-AF9-expressing stem and progenitor cells displayed distinct properties such as colony formation, differentiation and resistance to chemotherapeutic drugs. Turning-off the fusion resulted in multi-lineage differentiation of LT-HSC-derived cells, whereas GMP-derived cells were limited to mature macrophages and granulocytes suggesting partial maintenance of their original identity. In line with these in vitro observations, lower cell numbers of transplanted LT-HSCs induced a more aggressive leukemia with a significantly shorter latency as compared to ST-HSC, CMP or GMPs. Immunophenotypically 15% of the LT-HSC derived leukemias displayed a CMP–like phenotype and had a median latency of 37d (“early”) whereas the rest of the cases displayed a GMP-like phenotype with a median latency of 73d (“late”). In contrast, only GMP-like phenotypes and longer latencies were observed upon transplanting ST-HSCs (75d), CMPs (72d) or GMPs (100d). Transplantation of blasts from “early” LT-HSC- and GMP-derived leukemias into secondary recipients induced the disease after similar latency, however, cytarabine (Ara-C) treatment significantly delayed only the disease induced by GMP- but not by LT-HSC-derived blasts. Gene expression profiling in immortalized pre-leukemic cells revealed down-regulation of over 300 genes, including several well-known MLL targets such as Meis1, HoxA5, HoxA9 and HoxA10 upon reducing the levels of MLL-AF9 expression. Likewise, we observed a global decrease in histone H3 lysine 79 dimethylation consistent with a Dot1l function in MLL-AF9 driven leukemia. LT-HSC-derived (“early”) blasts displayed distinct genetic signatures with > 400 genes highly and > 1300 genes lowly expressed (p001 fc1.5), clearly separating them from the GMP-derived blasts. Evi-1 and Erg, two prognostic markers in patient-derived gene signatures, stood out among these genes. The aggressive “early” LT-derived murine leukemias showed high Evi-1 and Erg expression levels (Evi-1 high, Erg high) as compared to the “late” LT-derived (Evi-1 low, Erg high) or the GMP-derived leukemias (Evi-1 low, Erg low). These observations suggest that the previously reported poor prognosis associated with elevated EVI-1 and/or ERG expression might directly reflect the cell of origin of the disease. We are currently exploiting our highly informative MLL-AF9 disease model to evaluate the functional relevance of novel origin-dependent MLL-AF9 target genes and to identify novel prognostic markers and therapeutic targets. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2633-2633
Author(s):  
Olivia L Francis ◽  
Terry-Ann MIlford ◽  
Ineavely Baez ◽  
Jacqueline Coats ◽  
Christopher L. Morris ◽  
...  

Abstract Philadelphia chromosome (Ph)-like B cell acute lymphoblastic leukemia (B-ALL) is a high-risk leukemia with a gene expression profile similar to BCR-ABL1+ B-ALL. Approximately 50% of all Ph-like B-ALL is characterized by genetic alterations leading to overexpression of CRLF2 (CRLF2 B-ALL). CRLF2 B-ALL occurs 5 times more often in Hispanic and Native American children than others and is prevalent in adolescents and young adults. The poor outcomes associated with CRLF2 B-ALL represent a major clinical challenge and an important component of pediatric cancer health disparities. Biologically, CRLF2 acts as a receptor component for the cytokine, TSLP, which induces JAK2-STAT5 and PI3/AKT/mTOR pathway activation downstream of binding to CRLF2. Activating JAK mutations are associated with CRLF2 B-ALL, but overall data indicate that JAK mutations are present in 50% or less of CRLF2 B-ALL. Our data show that normal primary human bone marrow (BM) stromal cells express TSLP, suggesting that TSLP-induced CRLF2 signals could play a role in the initiation, maintenance and progression of CRLF2 B-ALL, particularly in cases without JAK mutations. Consistent with this, TSLP has been reported to increase in vitro production of human fetal B cell precursors. However studies of TSLP in B lymphopoiesis have been conducted almost exclusively in mice which show low homology (~40%) to human TSLP and CRLF2. Further, using phospho flow cytometry we show that mouse TSLP is unable to induce increases in pSTAT5, pAKT and pS6 observed in CRLF2 B-ALL cells stimulated with human TSLP, confirming the species specificity of mouse TSLP. These findings underscore the importance and challenge of developing in vivo systems that can model human TSLP-CRLF2 interactions for evaluating therapies and studying leukemogenesis of CRRLF2 B-ALL. To address this challenge we engineered patient-derived xenograft (PDX) mice to produce human TSLP (hTSLP) by transplanting them with stromal cells transduced to express hTSLP (+T mice). Control (-T) mice were produced by transplanting with stroma transduced with a control vector. Supernatant from engineered +T stroma, but not -T stroma, induced JAK/STAT5 and PI3K/AKT/mTOR pathway activation in CRLF2 B-ALL cells. ELISA assays showed normal serum levels of hTSLP (12-32 pg/ml) in +T mice, while hTSLP was undetectable in -T mice. Since TSLP has been shown to increase in vitro production of human B cell precursors, we evaluated the in vivo functionality of our model by comparing the production of normal B cell precursors in the BM of +T and -T PDX mice generated with human umbilical cord blood CD34+ cells. Data from 3 different cord blood donors showed that production of B cell precursors is 3-5 fold increased in +T as compared to -T mice. TSLP-induced increases were specific to B lineage cells, initiated in the earliest CD19+ B cell precursors, and maintained through later stages of B cell development. Next we evaluate the in vivo functionality of our model using primary leukemia cells. +T and -T PDX mice were produced using primary CRLF2 B-ALL cells. BM was harvested and whole genome microarray was performed on isolated CRLF2 B-ALL cells. Evaluation of microarray data by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis showed that genes downstream of mTOR pathway activation were upregulated in +T as compared to -T PDX mice, confirming hTSLP activity in the +T PDX mice. Next we tested whether +T PDX mice provide an in vivo model of B-ALL that more closely mirrors patients than -T PDX mice. +T and -T PDX mice were generated from primary high risk B-ALL. RNAseq gene expression profiles from primary patient B-ALL cells were compared to those of the same patient sample expanded in +T and -T PDX mice. The gene expression pattern in +T mice was significantly closer to the primary patient sample than those from -T mice. The +T and -T PDX mice described here provide a novel preclinical model for studying the role of TSLP in the initiation, progression and maintenance of CRLF2 B-ALL and for evaluating drug efficacy in an in vivo model that more closely mirrors the in vivo environment present in patients. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 90 (7) ◽  
pp. 4299-4308 ◽  
Author(s):  
Nima Soleymanlou ◽  
Igor Jurisica ◽  
Ori Nevo ◽  
Francesca Ietta ◽  
Xin Zhang ◽  
...  

Abstract Background: Oxygen plays a central role in human placental pathologies including preeclampsia, a leading cause of fetal and maternal death and morbidity. Insufficient uteroplacental oxygenation in preeclampsia is believed to be responsible for the molecular events leading to the clinical manifestations of this disease. Design: Using high-throughput functional genomics, we determined the global gene expression profiles of placentae from high altitude pregnancies, a natural in vivo model of chronic hypoxia, as well as that of first-trimester explants under 3 and 20% oxygen, an in vitro organ culture model. We next compared the genomic profile from these two models with that obtained from pregnancies complicated by preeclampsia. Microarray data were analyzed using the binary tree-structured vector quantization algorithm, which generates global gene expression maps. Results: Our results highlight a striking global gene expression similarity between 3% O2-treated explants, high-altitude placentae, and importantly placentae from preeclamptic pregnancies. We demonstrate herein the utility of explant culture and high-altitude placenta as biologically relevant and powerful models for studying the oxygen-mediated events in preeclampsia. Conclusion: Our results provide molecular evidence that aberrant global placental gene expression changes in preeclampsia may be due to reduced oxygenation and that these events can successfully be mimicked by in vivo and in vitro models of placental hypoxia.


2008 ◽  
Vol 46 (01) ◽  
Author(s):  
F Moriconi ◽  
H Christiansen ◽  
H Christiansen ◽  
N Sheikh ◽  
J Dudas ◽  
...  

2020 ◽  
Vol 139 ◽  
pp. 153-160
Author(s):  
S Peeralil ◽  
TC Joseph ◽  
V Murugadas ◽  
PG Akhilnath ◽  
VN Sreejith ◽  
...  

Luminescent Vibrio harveyi is common in sea and estuarine waters. It produces several virulence factors and negatively affects larval penaeid shrimp in hatcheries, resulting in severe economic losses to shrimp aquaculture. Although V. harveyi is an important pathogen of shrimp, its pathogenicity mechanisms have yet to be completely elucidated. In the present study, isolates of V. harveyi were isolated and characterized from diseased Penaeus monodon postlarvae from hatcheries in Kerala, India, from September to December 2016. All 23 tested isolates were positive for lipase, phospholipase, caseinase, gelatinase and chitinase activity, and 3 of the isolates (MFB32, MFB71 and MFB68) showed potential for significant biofilm formation. Based on the presence of virulence genes, the isolates of V. harveyi were grouped into 6 genotypes, predominated by vhpA+ flaB+ ser+ vhh1- luxR+ vopD- vcrD+ vscN-. One isolate from each genotype was randomly selected for in vivo virulence experiments, and the LD50 ranged from 1.7 ± 0.5 × 103 to 4.1 ± 0.1 × 105 CFU ml-1. The expression of genes during the infection in postlarvae was high in 2 of the isolates (MFB12 and MFB32), consistent with the result of the challenge test. However, in MFB19, even though all genes tested were present, their expression level was very low and likely contributed to its lack of virulence. Because of the significant variation in gene expression, the presence of virulence genes alone cannot be used as a marker for pathogenicity of V. harveyi.


2017 ◽  
Vol 95 (3) ◽  
pp. 1313 ◽  
Author(s):  
L. Zhang ◽  
L. F. Schütz ◽  
C. L. Robinson ◽  
M. L. Totty ◽  
L. J. Spicer

Sign in / Sign up

Export Citation Format

Share Document