Randomized phase II trial of erlotinib (E) plus high-dose celecoxib (HD-C) or placebo (P) in advanced non-small cell lung cancer.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 7518-7518
Author(s):  
Karen L. Reckamp ◽  
Marianna Koczywas ◽  
Mihaela C. Cristea ◽  
Jonathan Dowell ◽  
Brian Gardner ◽  
...  

7518 Background: Cyclooxygenase-2 (COX-2)-dependent signalling represents a potential mechanism of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy in NSCLC. This is mediated in part through an EGFR-independent activation of MAPK/Erk by the COX-2 metabolite PGE2. In addition, PGE2 promotes downregulation of E-cadherin and epithelial to mesenchymal transition. We hypothesize that EGFR and COX-2 inhibition with E and HD-C will augment EGFR TKI efficacy by increasing tumor E-cadherin expression and blocking PGE2-mediated resistance to EGFR inhibition. Methods: Pts with stage IIIB/IV NSCLC who progressed following at least one line of therapy or refused standard chemotherapy were randomized to E (150mg/day)/HD-C (600mg/2x day) vs E/P in a 28-day cycle. Pts were stratified by smoking status and ECOG PS. The primary endpoint was PFS with 80% power to detect a 50% improvement; assessments were performed every 2 cycles. Secondary endpoints included response rate, OS and evaluation of molecular markers in tissue and serum to assess targeting COX-2-related pathways and evaluate EGFR TKI-resistance. All pts were required to have pre-treatment tissue available. Results: 107 pts were enrolled with comparable baseline characteristics in both arms. Disease control rate (DCR) was similar in both arms, and a trend toward improved PFS was seen in the E/HD-C arm with HR 0.81 (see Table). Analysis of those with EGFR wild type revealed a significantly increased PFS while those with EGFR mutation had similar PFS in both groups. Safety analysis showed similar toxicity in both arms. Additional biomarker correlations will be presented. Conclusions: The combination of E/C in metastatic NSCLC with HD-C is well tolerated and demonstrates significantly improved efficacy in EGFR wt population. This warrants further study into the COX-2-dependent mechanisms of primary resistance to EGFR TKI therapy. Supported by NIH 1P50 CA90388, K12 CA01727 and medical research funds from the Dept of Veterans’ Affairs. [Table: see text]

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 7640-7640
Author(s):  
K. L. Reckamp ◽  
B. K. Gardner ◽  
R. A. Figlin ◽  
D. Elashoff ◽  
K. Krysan ◽  
...  

7640 Background: Cyclooxygenase-2 (COX-2) overexpression may mediate resistance to EGFR TK inhibition through prostaglandin E2 (PGE2)-dependent promotion of epithelial to mesenchymal transition (EMT). Thomson, et al. reported that the suppression of epithelial markers such as E-cadherin led to resistance to erlotinib (Cancer Res 2005;65:9455). In addition, PGE2 downregulates E-cadherin expression by upregulating transcriptional repressors including ZEB1 and Snail, as described by Dohadwala et al (Cancer Res 2006;66:5338). These findings suggest that COX-2 inhibition may enhance the efficacy of EGFR TKI therapy in NSCLC. Methods: A phase I, dose escalation trial to was performed investigating the combination of celecoxib and erlotinib in pts with advanced NSCLC. Soluble E-cadherin (sEC) was evaluated by ELISA in pt serum at baseline and weeks 4 and 8 of treatment. Other markers of COX-2 gene expression were evaluated by ELISA, including matrix metalloproteinase (MMP)-9, MMP-2 and tissue inhibitor of MMP (TIMP1). Results: 22 pts were enrolled and 21 were evaluable for the determination of the optimal dose, toxicity assessment and response (reported in Clin Cancer Res 2006;12:3381). Here we report serum sEC and MMP-9 levels, which were analyzed according to best response (PR, SD or PD) in 21 pts. SEC was analyzed according to best response (PR, SD or PD). We found a significant decrease in sEC between baseline and week 8 in pts with PR when compared to those with SD or PD (p = 0.021). In pts who responded to the combination therapy, baseline MMP-9 was significantly lower compared to non-responders (p = 0.006). Conclusions: SEC, MMP-9 and other downstream markers of COX-2 gene expression may be useful for assessing response to combination celecoxib and erlotinib in pts with advanced NSCLC. A randomized Phase II trial is planned comparing erlotinib and celecoxib with erlotinib plus placebo in advanced NSCLC, to evaluate the efficacy of this combination therapy and to assess these and other biomarkers in both serum and tumor tissue. Supported by ASCO Young Investigator Award, UCLA Lung Cancer SPORE NCI P50 CA 90388 and GLAVAHS Career Development Award. No significant financial relationships to disclose.


2016 ◽  
Vol 94 (12) ◽  
pp. 1397-1409 ◽  
Author(s):  
Poulomi Banerjee ◽  
Harshini Surendran ◽  
Debabani Roy Chowdhury ◽  
Karthik Prabhakar ◽  
Rajarshi Pal

2011 ◽  
Vol 300 (2) ◽  
pp. F511-F520 ◽  
Author(s):  
Hiroko Togawa ◽  
Koichi Nakanishi ◽  
Hironobu Mukaiyama ◽  
Taketsugu Hama ◽  
Yuko Shima ◽  
...  

In polycystic kidney disease (PKD), cyst lining cells show polarity abnormalities. Recent studies have demonstrated loss of cell contact in cyst cells, suggesting induction of epithelial-to-mesenchymal transition (EMT). Recently, EMT has been implicated in the pathogenesis of PKD. To explore further evidence of EMT in PKD, we examined age- and segment-specific expression of adhesion molecules and mesenchymal markers in PCK rats, an orthologous model of human autosomal-recessive PKD. Kidneys from 5 male PCK and 5 control rats each at 0 days, 1, 3, 10, and 14 wk, and 4 mo of age were serially sectioned and stained with segment-specific markers and antibodies against E-cadherin, Snail1, β-catenin, and N-cadherin. mRNAs for E-cadherin and Snail1 were quantified by real-time PCR. Vimentin, fibronectin, and α-smooth muscle actin (α-SMA) expressions were assessed as mesenchymal markers. E-cadherin expression pattern was correlated with the disease pathology in that tubule segments showing the highest expression in control had much severer cyst formation in PCK rats. In PCK rats, E-cadherin and β-catenin in cystic tubules was attenuated and localized to lateral areas of cell-cell contact, whereas nuclear expression of Snail1 increased in parallel with cyst enlargement. Some epithelial cells in large cysts derived from these segments, especially in adjacent fibrotic areas, showed positive immunoreactivity for vimentin and fibronectin. In conclusion, these findings suggest that epithelial cells in cysts acquire mesenchymal features in response to cyst enlargement and participate in progressive renal fibrosis. Our study clarified the nephron segment-specific cyst profile related to EMT in PCK rats. EMT may play a key role in polycystic kidney disease.


2016 ◽  
Vol 113 (27) ◽  
pp. 7620-7625 ◽  
Author(s):  
Qisheng Li ◽  
Catherine Sodroski ◽  
Brianna Lowey ◽  
Cameron J. Schweitzer ◽  
Helen Cha ◽  
...  

Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Krassimira Todorova ◽  
Diana Zasheva ◽  
Kristiyan Kanev ◽  
Soren Hayrabedyan

Epithelial to mesenchymal transition is an essential step in advanced cancer development. Many master transcription factors shift their expression to drive this process, while noncoding RNAs families like miR-200 are found to restrict it. In this study we investigated how the tumor suppressor miR-204 and several transcription factors modulate main markers of mesenchymal transformation like E- and N-cadherin, SLUG, VEGF, and SOX-9 in prostate cancer cell line model (LNCaP, PC3, VCaP, and NCI-H660). We found that SLUG, E-cadherin, and N-cadherin are differentially modulated by miR-204, using miR-204 specific mimics and inhibitors and siRNA gene silencing (RUNX2, ETS-1, and cMYB). The genome perturbation associated TMPRSS2-ERG fusion coincided with shift from tumor-suppressor to tumor-promoting activity of this miRNA. The ability of miR-204 to suppress cancer cell viability and migration was lost in the fusion harboring cell lines. We found differential E-cadherin splicing corroborating to miR-204 modulatory effects. RUNX2, ETS1, and cMYB are involved in the regulation of E-cadherin, N-cadherin, and VEGFA expression. RUNX2 knockdown results in SOX9 downregulation, while ETS1 and cMYB silencing result in SOX9 upregulation in VCaP cells. Their expression was found to be also methylation dependent. Our study provides means for understanding cancer heterogeneity in regard to adapted therapeutic approaches development.


2019 ◽  
Vol 34 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Gino Marioni ◽  
Lorenzo Nicolè ◽  
Rocco Cappellesso ◽  
Rosario Marchese-Ragona ◽  
Elena Fasanaro ◽  
...  

Aim: The novel primary end-point of the present study was to ascertain β-arrestin-1 expression in a cohort of consecutive patients with laryngeal squamous cell carcinoma (LSCC) with information available on their cigarette-smoking habits. A secondary end-point was to conduct a preliminary clinical and pathological investigation into the possible role of β-arrestin-1 in the epithelial-to-mesenchymal transition (EMT), identified by testing for E-cadherin, Zeb1, and Zeb2 expression, in the setting of LSCC. Methods: The expression of β-arrestin-1, E-cadherin, zeb1, and zeb2 was ascertained in 20 consecutive LSCCs. Results: Statistical analysis showed no significant associations between β-arrestin-1 and EMT (based on the expression of E-cadherin, Zeb1, and Zeb2). The combined effect of nicotine and β-arrestin-1 was significantly associated with a shorter disease-free survival ( P=0.01) in our series of LSCC. This latter result was also confirmed in an independent, publicly available LSCC cohort ( P=0.047). Conclusions: Further investigations on larger series (ideally in prospective settings) are needed before we can consider closer follow-up protocols and/or more aggressive treatments for patients with LSCC and a combination of nicotine exposure and β-arrestin-1 positivity in tumor cells at the time of their diagnosis. Further studies on how β-arrestin functions in cancer via different signaling pathways might reveal potential targets for the treatment of even advanced laryngeal malignancies.


2007 ◽  
Vol 204 (12) ◽  
pp. 2935-2948 ◽  
Author(s):  
Kevin G. Leong ◽  
Kyle Niessen ◽  
Iva Kulic ◽  
Afshin Raouf ◽  
Connie Eaves ◽  
...  

Aberrant expression of Jagged1 and Notch1 are associated with poor outcome in breast cancer. However, the reason that Jagged1 and/or Notch overexpression portends a poor prognosis is unknown. We identify Slug, a transcriptional repressor, as a novel Notch target and show that elevated levels of Slug correlate with increased expression of Jagged1 in various human cancers. Slug was essential for Notch-mediated repression of E-cadherin, which resulted in β-catenin activation and resistance to anoikis. Inhibition of ligand-induced Notch signaling in xenografted Slug-positive/E-cadherin–negative breast tumors promoted apoptosis and inhibited tumor growth and metastasis. This response was associated with down-regulated Slug expression, reexpression of E-cadherin, and suppression of active β-catenin. Our findings suggest that ligand-induced Notch activation, through the induction of Slug, promotes tumor growth and metastasis characterized by epithelial-to-mesenchymal transition and inhibition of anoikis.


Sign in / Sign up

Export Citation Format

Share Document