A multiplex methylation-specific PCR assay for detection of early-stage ovarian cancer using cell-free serum DNA.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 5535-5535
Author(s):  
Beihua Kong ◽  
Qing Zhang ◽  
Guohong Hu ◽  
Qifeng Yang ◽  
Ruifen Dong ◽  
...  

5535 Background: Epithelial ovarian cancer (EOC) remains the most lethal disease among gynecological malignancies. Prompt diagnosis is challenging because of the non-specific symptoms exhibited during the early stage of the disease. So there is an urgent need for better detection methods. Here we performed this work to build up a platform of multiplex methylation-specific PCR (MSP) assay to improve the early detection of ovarian cancer, via identifying the methylation status of cell-free serum DNA. Methods: After screening, we chose seven genes (APC, RASSF1A, CDH1, RUNX3, TFPI2, SFRP5 and OPCML) with a high frequency of methylation as candidate genes to construct the multiplex-MSP assay. When methylation of at least one of the seven genes was observed, the multiplex-MSP assay was considered positive. We performed the retrospective and screening study to verify its specificity and sensitivity in the detection of EOC. Results: The methylation status of cell-free serum DNA was examined in the preoperative serum of 202 patients, including 87 EOC cases (stage I, n=41, stage II-IV, n=46), 53 benign ovarian tumors and 62 healthy controls. As expected, multiplex MSP assay achieved a sensitivity of 85.3% and a specificity of 90.5% in stage I EOC, strikingly higher than that of single CA125, producing a sensitivity of 56.1% at 64.15% specificity [p=0.0036](Table). Conclusions: Multiplex MSP assay analyzing the methylation status of cell-free serum DNA is a suitable and reliable approach to improve the early detection of ovarian cancer, potentially benefiting a broad range of applications in clinical oncology. [Table: see text]

2013 ◽  
Vol 130 (1) ◽  
pp. 132-139 ◽  
Author(s):  
Qing Zhang ◽  
Guohong Hu ◽  
Qifeng Yang ◽  
Ruifen Dong ◽  
Xing Xie ◽  
...  

Author(s):  
Li Zhang ◽  
Sijuan Tian ◽  
Minyi Zhao ◽  
Ting Yang ◽  
Shimin Quan ◽  
...  

Background: Smad3 is a pivotal intracellular mediator for participating in the activation of multiple immune signal pathway. Objective: The epigenetic regulation mechanism of the positive immune factor Smad3 in cervical cancer remains unknown. Therefore, the epigenetic regulation on Smad3 is investigated in this study. Methods: The methylation status of SMAD3 was detected by Methylation-specific PCR (MS-PCR) and Quantitative Methylation-specific PCR (MS-qPCR) in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT1-Smad3 regulation was elucidated using cervical cancer cell lines containing siRNA or/and overexpression system. Confirmation of the regulation of DNMT1 by SUV39H1 used Chromatin immunoprecipitation-qPCR (ChIP-qPCR). The statistical methods used for comparing samples between groups were paired t tests and one-way ANOVAs. Results: H3K9me3 protein which regulated by SUV39H1 directly interacts with the DNMT1 promoter region to regulate its expression in cervical cancer cells, resulting in the reduce expression of the downstream target gene DNMT1. In addition, DNMT1 mediates the epigenetic modulation of the SMAD3 gene by directly binding to its promoter region. The depletion of DNMT1 effectively restores the expression of Smad3 in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1-DNMT1 was found to correlate with Smad3 expression in accordance with the expression at the cellular level. Notably, the promoter region of SMAD3 was hypermethylated in cervical cancer tissues, and this hypermethylation inhibits the subsequent gene expression. Conclusion: These results indicate that SUV39H1-DNMT1 is a crucial Smad3 regulatory axis in cervical cancer. SUV39H1-DNMT1 axis may provide a potential therapeutic target for the treatment of cervical cancer.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 325
Author(s):  
Christopher Walker ◽  
Tuan-Minh Nguyen ◽  
Shlomit Jessel ◽  
Ayesha B. Alvero ◽  
Dan-Arin Silasi ◽  
...  

Background: Mortality from ovarian cancer remains high due to the lack of methods for early detection. The difficulty lies in the low prevalence of the disease necessitating a significantly high specificity and positive-predictive value (PPV) to avoid unneeded and invasive intervention. Currently, cancer antigen- 125 (CA-125) is the most commonly used biomarker for the early detection of ovarian cancer. In this study we determine the value of combining macrophage migration inhibitory factor (MIF), osteopontin (OPN), and prolactin (PROL) with CA-125 in the detection of ovarian cancer serum samples from healthy controls. Materials and Methods: A total of 432 serum samples were included in this study. 153 samples were from ovarian cancer patients and 279 samples were from age-matched healthy controls. The four proteins were quantified using a fully automated, multi-analyte immunoassay. The serum samples were divided into training and testing datasets and analyzed using four classification models to calculate accuracy, sensitivity, specificity, PPV, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Results: The four-protein biomarker panel yielded an average accuracy of 91% compared to 85% using CA-125 alone across four classification models (p = 3.224 × 10−9). Further, in our cohort, the four-protein biomarker panel demonstrated a higher sensitivity (median of 76%), specificity (median of 98%), PPV (median of 91.5%), and NPV (median of 92%), compared to CA-125 alone. The performance of the four-protein biomarker remained better than CA-125 alone even in experiments comparing early stage (Stage I and Stage II) ovarian cancer to healthy controls. Conclusions: Combining MIF, OPN, PROL, and CA-125 can better differentiate ovarian cancer from healthy controls compared to CA-125 alone.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ruoyue Tan ◽  
Guanghui Zhang ◽  
Ruochen Liu ◽  
Jianbing Hou ◽  
Zhen Dong ◽  
...  

Stomach adenocarcinoma (STAD) is a leading cause of cancer deaths, and the outcome of the patients remains dismal for the lack of effective biomarkers of early detection. Recent studies have elucidated the landscape of genomic alterations of gastric cancer and reveal some biomarkers of advanced-stage gastric cancer, however, information about early-stage biomarkers is limited. Here, we adopt Weighted Gene Co-expression Network Analysis (WGCNA) to screen potential biomarkers for early-stage STAD using RNA-Seq and clinical data from TCGA database. We find six gene clusters (or modules) are significantly correlated with the stage-I STADs. Among these, five hub genes, i.e., MS4A1, THBS2, VCAN, PDGFRB, and KCNA3 are identified and significantly de-regulated in the stage-I STADs compared with the normal stomach gland tissues, which suggests they can serve as potential early diagnostic biomarkers. Moreover, we show that high expression of VCAN and PDGFRB is associated with poor prognosis of STAD. VCAN encodes a large chondroitin sulfate proteoglycan that is the main component of the extracellular matrix, and PDGFRB encodes a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor (PDGF) family. Consistently, Gene Ontology (GO) analysis of differentially expressed genes in the STADs indicates terms associated with extracellular matrix and receptor ligand activity are significantly enriched. Protein-protein network interaction analysis (PPI) and Gene Set Enrichment Analysis (GSEA) further support the core role of VCAN and PDGFRB in the tumorigenesis. Collectively, our study identifies the potential biomarkers for early detection and prognosis of STAD.


2015 ◽  
Vol 12 (1) ◽  
pp. 55-62
Author(s):  
Baghdad Science Journal

Epithelial ovarian cancer is the leading cause of cancer deaths in women. To date, an effective screening tool for ovarian cancer has not been identified Several clinical and biological factors including serum cancer antigen 125 (CA- 125) have been assessed for prognostic and predictive relevance CA-125 is an epithelial marker derived from coelomic epithelium. It is elevated in 90% of advanced ovarian cancers and in 50% of early ovarian cancers while 20% of ovarian cancers have low or no expression of CA- 125 CA-125 concentrations were measured by Mini Vidas test (VIDAS CA125 II / BIOMERIEUX / France). The median CA-125 levels were significantly higher in the sera of ovarian cancer patients than in those with benign tumors and in healthy controls. However in correlation with stages the results showed that Patients with stage II have highly significant differences in level of serum CA125 compare with stage I in and stage III.CA125 showed low sensitivity to detect stage I carcinoma of the ovary which limits its value as an initial screening tool therefore combining of CA125 with other markers might enable improved early detection of ovarian cancer as compared with use of this marker alone.


2010 ◽  
Vol 28 (13) ◽  
pp. 2159-2166 ◽  
Author(s):  
Zoya Yurkovetsky ◽  
Steven Skates ◽  
Aleksey Lomakin ◽  
Brian Nolen ◽  
Trenton Pulsipher ◽  
...  

PurposeEarly detection of ovarian cancer has great promise to improve clinical outcome.Patients and MethodsNinety-six serum biomarkers were analyzed in sera from healthy women and from patients with ovarian cancer, benign pelvic tumors, and breast, colorectal, and lung cancers, using multiplex xMAP bead-based immunoassays. A Metropolis algorithm with Monte Carlo simulation (MMC) was used for analysis of the data.ResultsA training set, including sera from 139 patients with early-stage ovarian cancer, 149 patients with late-stage ovarian cancer, and 1,102 healthy women, was analyzed with MMC algorithm and cross validation to identify an optimal biomarker panel discriminating early-stage cancer from healthy controls. The four-biomarker panel providing the highest diagnostic power of 86% sensitivity (SN) for early-stage and 93% SN for late-stage ovarian cancer at 98% specificity (SP) was comprised of CA-125, HE4, CEA, and VCAM-1. This model was applied to an independent blinded validation set consisting of sera from 44 patients with early-stage ovarian cancer, 124 patients with late-stage ovarian cancer, and 929 healthy women, providing unbiased estimates of 86% SN for stage I and II and 95% SN for stage III and IV disease at 98% SP. This panel was selective for ovarian cancer showing SN of 33% for benign pelvic disease, SN of 6% for breast cancer, SN of 0% for colorectal cancer, and SN of 36% for lung cancer.ConclusionA panel of CA-125, HE4, CEA, and VCAM-1, after additional validation, could serve as an initial stage in a screening strategy for epithelial ovarian cancer.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1598 ◽  
Author(s):  
Francesco Picardo ◽  
Antonella Romanelli ◽  
Laura Muinelo-Romay ◽  
Tommaso Mazza ◽  
Caterina Fusilli ◽  
...  

Epigenetic modifications of glyco-genes have been documented in different types of cancer and are tightly linked to proliferation, invasiveness, metastasis, and drug resistance. This study aims to investigate the diagnostic, prognostic, and therapy-response predictive value of the glyco-gene B4GALT1 in colorectal cancer (CRC) patients. A Kaplan–Meier analysis was conducted in 1418 CRC patients (GEO and TCGA datasets) to assess the prognostic and therapy-response predictive values of the aberrant expression and methylation status of B4GALT1. Quantitative methylation-specific PCR (QMSP) and droplet digital quantitative methylation-specific PCR (dd-QMSP) were respectively used to detect hypermethylated B4GALT1 in metastasis and plasma in four cohorts of metastatic CRC cases (mCRC). Both the downregulated expression and promoter hypermethylation of B4GALT1 have a negative prognostic impact on CRC. Interestingly a low expression level of B4GALT1 was significantly associated with poor cetuximab response (progression-free survival (PFS) p = 0.01) particularly in wild-type (WT)-KRAS patients (p = 0.03). B4GALT1 promoter was aberrantly methylated in liver and lung metastases. The detection of hypermethylated B4GALT1 in plasma of mCRC patients showed a highly discriminative receiver operating characteristic (ROC) curve profile (area under curve (AUC) value 0.750; 95% CI: 0.592–0.908, p = 0.008), clearly distinguishing mCRC patients from healthy controls. Based on an optimal cut-off value defined by the ROC analysis, B4GALT1 yield a 100% specificity and a 50% sensitivity. These data support the potential value of B4GALT1 as an additional novel biomarker for the prediction of cetuximab response, and as a specific and sensitive diagnostic circulating biomarker that can be detected in CRC.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 596 ◽  
Author(s):  
Jing Guo ◽  
Wei-Lei Yang ◽  
Daewoo Pak ◽  
Joseph Celestino ◽  
Karen H. Lu ◽  
...  

Early detection of ovarian cancer promises to reduce mortality. While serum CA125 can detect more than 60% of patients with early stage (I–II) disease, greater sensitivity might be observed with a panel of biomarkers. Ten protein antigens and 12 autoantibody biomarkers were measured in sera from 76 patients with early stage (I–II), 44 patients with late stage (III–IV) ovarian cancer and 200 healthy participants in the normal risk ovarian cancer screening study. A four-biomarker panel (CA125, osteopontin (OPN), macrophage inhibitory factor (MIF), and anti-IL-8 autoantibodies) detected 82% of early stage cancers compared to 65% with CA125 alone. In early stage subjects the area under the receiver operating characteristic curve (AUC) for the panel (0.985) was significantly greater (p < 0.001) than the AUC for CA125 alone (0.885). Assaying an independent validation set of sera from 71 early stage ovarian cancer patients, 45 late stage patients and 131 healthy women, AUC in early stage disease was improved from 0.947 with CA125 alone to 0.974 with the four-biomarker panel (p = 0.015). Consequently, OPN, MIF and IL-8 autoantibodies can be used in combination with CA125 to distinguish ovarian cancer patients from healthy controls with high sensitivity. Osteopontin appears to be a robust biomarker that deserves further evaluation in combination with CA125.


Sign in / Sign up

Export Citation Format

Share Document