New targeted anti CDK4/6 peptide MM-D37K.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13545-e13545 ◽  
Author(s):  
Vladimir Konstantinovich Bozhenko ◽  
Tatyana Michailovna Kulinich ◽  
Elena Aleksandrovna Kudinova ◽  
Andrey Boldyrev ◽  
Vladimir Alekseevich Solodkij

e13545 Background: MM-D37K is a synthetic peptide which consists of p16INK4a-specific inhibitor of complex cyclin D- CDK4 and CDK6 and cell penetrating peptide (CPP) – Antp (Penetratin). We investigated in vitro and in vivo cytotoxic, cytostatic and antitumor activity of MM-D37K. The level of cyclin A, Ki67,bax, bcl-2 and pRb phosphorylation was investigated. Full range of Toxicology tests and Pharmacokinetics experiments in mice, rats and rabbits were performed. Methods: Different cell lines (Jurcat, Raji, A549, MCF-7, Hct-116, Ht-29, HEK293) were incubated with 0.1-100 mM MM-D37K for 24-48 hrs. Proliferation (MTT), DNA-content, cell cycle (flow cytometry) and mRNA level of appropriate proteins (RT PCR) were investigated. In vivo experiments were conducted on xenograft model of HCT116, A-549 at concentration 5 and 10 mg/kg of MM-D37K. Toxicology experiments were made under RF Law and included 3 types of animals. LC-MS MMD37K method of detection in plasma was developed. Results: MM-D37K prevented pRb phosphorilation and proliferation activation in all investigated cell lines. Cell cycle was blocked in G1 phase. Cytostatic effect did not depend on p16 mutation or expression. MM-D37K induced apoptosis in 20-82% of investigated cells at 40 mM with lowest level for MCF-7. LD10 for rats was 100 mg/kg and no deaths were registered for rabbits (highest dose was 50 mg/kg). Concentration of MMD-37K in plasma after 2 min and bolus i.v. injection in dose 10 mg/kg was 72.16±5.64 mcg/ml. Concentration decreased in two phases. 1st – t1/2 = 2.39±0.39 min and for 2nd t1/2=2.39±0.39 hr. Antitumor effects in xenograft model were 53% for A-549 and 67% for HCT116. Conclusions: Our results proved cytotoxic, cytostatic and antitumor effects of MM-D37K in investigated cell lines in vitro and in vivo. Toxicological and pharmacokinetics results allow us recommend for I/IIa Phase clinical trial. (Support: MetaMax Ltd., RFFI, Minpromtorg RF.)

2020 ◽  
Vol 13 ◽  
pp. 175628481989543
Author(s):  
Amanda Braga Bona ◽  
Danielle Queiroz Calcagno ◽  
Helem Ferreira Ribeiro ◽  
José Augusto Pereira Carneiro Muniz ◽  
Giovanny Rebouças Pinto ◽  
...  

Background: Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. Methods: To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. Results: Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. Conclusions: We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1182-1182
Author(s):  
Yang Liu ◽  
Changying Jiang ◽  
Fangfang Yan ◽  
Joseph McIntosh ◽  
Alexa A Jordan ◽  
...  

Abstract Background Mantle cell lymphoma (MCL) is a rare and aggressive B-cell lymphoma characterized by poor prognosis. Although remarkable therapeutic advances have been made by covalent Bruton's tyrosine kinase (BTK) inhibition and CAR T cell therapy, therapeutic resistance inevitably occurs and leads to dismal clinical outcome. Pirtobrutinib (LOXO-305) is a next-generation, highly selective and non-covalent BTK inhibitor. A phase 1/2 BRUIN study showed that pirtobrutinib demonstrated promising efficacy in heavily pretreated MCL patients with or without prior covalent BTK inhibition. Here, we investigated the mechanism of action of pirtobrutinib in MCL cells in vitro and proposed the potential combination therapy in a venetoclax-resistant xenograft model. Methods MCL cell proliferation was monitored by trypan blue exclusion assay after 24-, 48- and 72-hour treatment with pirtobrutinib and ibrutinib. We performed Annexin V/PI staining to measure the apoptosis inductive effects. Cell cycle analysis using propidium iodide (PI) DNA staining was conducted to compare cell cycle progression kinetics between pirtobrutinib and ibrutinib. We performed RNAseq analysis in Z138 cells to compare differentially expressed genes (DEGs) between pirtobrutinib and ibrutinib treatment. Western blotting was utilized to detect specific signaling proteins. Mino-venetoclax-R cells were inoculated subcutaneously into NSG mice and used for in vivo drug efficacy determination. Results Compared to covalent BTK inhibitor ibrutinib, the novel non-covalent BTK inhibitor pirtobrutinib was more potent in inhibiting MCL cell proliferation in a panel of MCL cell lines, especially in ibrutinib/venetoclax resistant cell lines (pirtobrutinib vs. ibrutinib, p<0.01). Treatment with pirtobrutinib (10μM) for 24 hours induced higher levels of apoptosis than that by ibrutinib in all the MCL cell lines tested (p<0.05), which was also confirmed at the molecular level by stronger caspase-3 activation and PARP cleavage. To understand the mechanism of action, we performed whole transcriptomic profiling by RNAseq analysis using Z138 cells treated with/without pirtobrutinib or ibrutinib. Pirtobrutinib treatment resulted in upregulation of 137 genes and downregulation of 97 genes compared to the ibrutinib treatment (adjusted p<0.05). In addition to the downregulated MYC targets and PI3K/Akt pathway, gene set enrichment analysis (GSEA) revealed a significant enrichment for G2/M checkpoints and E2F targets signatures (key genes: PLK1, CDKN1A and CCNB1) in pirtobrutinib treated cells. Consistently, follow-up studies showed that γH2AX level was highly increased upon pirtobrutinib treatment. Pirtobrutinib treatment but not ibrutinib treatment resulted in G2/M cell cycle arrest. The blockade of cell cycle progression is positively correlated with decreased protein levels of critical regulators of S and G2/M phase transition such as cyclin B and CDC25C. BTK inhibitor (ibrutinib) in combination with venetoclax has shown great efficacy in preclinical models and in MCL patients. Therefore, here we assessed the in vivo efficacy of pirtobrutinib in combination with venetoclax with side-by-side comparison to ibrutinib & venetoclax in the Mino-venetoclax-R mouse model. Pirtobrutinib & venetoclax combination enhanced the efficacy of pirtobrutinib in restraining the tumor size (p<0.001) in the xenograft model. Notably, this novel combinatorial treatment exerted much higher potency than ibrutinib and venetoclax combination therapy (p<0.001). In addition, the pirtobrutinib & venetoclax combination was well tolerated and did not reduce overall mouse body weights compared with the vehicle treated mice. Conclusions Pirtobrutinib overcame both ibrutinib and venetoclax resistance in MCL cells in vitro and in vivo. G2/M checkpoints and E2F targets pathways were significantly enriched in both cases. Pirtobrutinib & venetoclax showed better in vivo efficacy in MCL models than combination of ibrutinib & venetoclax. Figure 1 Figure 1. Disclosures Wang: Genentech: Consultancy; Juno: Consultancy, Research Funding; Kite Pharma: Consultancy, Honoraria, Research Funding; Clinical Care Options: Honoraria; CAHON: Honoraria; InnoCare: Consultancy, Research Funding; Moffit Cancer Center: Honoraria; Molecular Templates: Research Funding; Oncternal: Consultancy, Research Funding; DTRM Biopharma (Cayman) Limited: Consultancy; Hebei Cancer Prevention Federation: Honoraria; Lilly: Research Funding; Loxo Oncology: Consultancy, Research Funding; BioInvent: Research Funding; OMI: Honoraria; Miltenyi Biomedicine GmbH: Consultancy, Honoraria; Imedex: Honoraria; Physicians Education Resources (PER): Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Bayer Healthcare: Consultancy; Chinese Medical Association: Honoraria; Dava Oncology: Honoraria; Celgene: Research Funding; Mumbai Hematology Group: Honoraria; Acerta Pharma: Consultancy, Honoraria, Research Funding; BeiGene: Consultancy, Honoraria, Research Funding; Newbridge Pharmaceuticals: Honoraria; CStone: Consultancy; BGICS: Honoraria; The First Afflicted Hospital of Zhejiang University: Honoraria; Scripps: Honoraria; Epizyme: Consultancy, Honoraria; Pharmacyclics: Consultancy, Research Funding; AstraZeneca: Consultancy, Honoraria, Research Funding; VelosBio: Consultancy, Research Funding; Anticancer Association: Honoraria.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5898
Author(s):  
Tao Yu ◽  
Junguo Cao ◽  
Montadar Alaa Eddine ◽  
Mahmoud Moustafa ◽  
Andreas Mock ◽  
...  

To date, there is no standard-of-care systemic therapy for the treatment of aggressive meningiomas. Receptor tyrosine kinases (RTK) are frequently expressed in aggressive meningiomas and are associated with poor survival. Ponatinib is a FDA- and EMA-approved RTK inhibitor and its efficacy in meningioma has not been studied so far. Therefore, we investigated ponatinib as a potential drug candidate against meningioma. Cell viability and cell proliferation of ponatinib-treated meningioma cells were assessed using crystal violet assay, manual counting and BrdU assay. Treated meningioma cell lines were subjected to flow cytometry to evaluate the effects on cell cycle and apoptosis. Meningioma-bearing mice were treated with ponatinib to examine antitumor effects in vivo. qPCR was performed to assess the mRNA levels of tyrosine kinase receptors after ponatinib treatment. Full-length cDNA sequencing was carried out to assess differential gene expression. IC50 values of ponatinib were between 171.2 and 341.9 nM in three meningioma cell lines. Ponatinib induced G0/G1 cell cycle arrest and subsequently led to an accumulation of cells in the subG1-phase. A significant induction of apoptosis was observed in vitro. In vivo, ponatinib inhibited meningioma growth by 72.6%. Mechanistically, this was associated with downregulation of PDGFRA/B and FLT3 mRNA levels, and mitochondrial dysfunction. Taken together, ponatinib is a promising candidate for targeted therapy in the treatment of aggressive meningioma.


2021 ◽  
Vol 11 ◽  
Author(s):  
You-Cai Yi ◽  
Rui Liang ◽  
Xiao-Yu Chen ◽  
Hui-Ning Fan ◽  
Ming Chen ◽  
...  

Dihydroartemisinin (DHA), a well-known antimalarial drug, has been widely investigated for its antitumor effects in multiple malignancies. However, its effects and regulatory mechanisms in colorectal cancer (CRC) are still unproved. In this study, in vitro experiments including CCK8, EdU, Transwell, and flow cytometry analyses and an in vivo tumorigenesis model were conducted to assess the effects of DHA on the bio-behaviors of CRC cells. Additionally, RNA-seq combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses was used to obtain the targets of DHA, and these were verified by molecular docking, qRT-PCR, and Western blotting. As a result, we found that DHA significantly suppressed the proliferation, DNA synthesis, and invasive capabilities and induced cell apoptosis and cell cycle arrest in HCT116, DLD1, and RKO cells in vitro and in vivo. Further analyses indicated that the targets of DHA were predominantly enriched in cell cycle-associated pathways, including CDK1, CCNB1, and PLK1; and DHA could bind with the CDK1/CCNB1 complex and inhibit the activation of CDK1/CCNB1/PLK1 signaling. Moreover, cucurbitacin E, a specific inhibitor of the CDK1/CCNB1 axis, enhanced the inhibitory effects of DHA on DNA synthesis and colony formation in HCT116 and DLD1 cells. In short, DHA could suppress the tumorigenesis and cycle progression of CRC cells by targeting CDK1/CCNB1/PLK1 signaling.


2014 ◽  
Vol 24 (7) ◽  
pp. 1158-1164 ◽  
Author(s):  
Lin Yu ◽  
Yuxi Wang ◽  
Yuqin Yao ◽  
Wenting Li ◽  
Qinhuai Lai ◽  
...  

ObjectiveOvarian cancer is 1 kind of a highly malignant gynecologic tumor, and current treatments have not achieved satisfactory effects. Human epidermal growth factor receptor 2 (HER2)–targeted therapies including trastuzumab and trastuzumab-DM1 (T-DM1) (antibody-cytotoxic drug conjugates) have been applied to treat HER2-overexpressing breast cancers in clinic. In the present study, we explored whether T-DM1 could effectively treat HER2-positive human ovarian carcinoma in vitro and in vivo.MethodsHER2 expressions of 6 ovarian cancer cell lines and 2 breast carcinoma cell lines were validated, and the binding capacity of T-DM1 to HER2-positive ovarian cancer SKOV3 cells were analyzed by flow cytometry. Nude mice bearing intraperitoneal and subcutaneous SKOV3 xenografts were used to investigate the antitumor effect of T-DM1.ResultsHigh HER2 expressions in SKOV3 cell lines were detected. The binding capacity of T-DM1 to HER2-positive SKOV3 cells was in a similar manner comparing with trastuzumab. In vitro, T-DM1 showed strong growth inhibitory on SKOV3 cells, with IC50 values of 0.15 nmol/L. Nude mice bearing intraperitoneal and subcutaneous SKOV3 xenografts were used to investigate the antitumor effects of T-DM1 in vivo. In subcutaneous xenografts model, T-DM1 (30 mg/kg and 10 mg/kg) indicated significant anticancer effects. It is noteworthy that tumors were completely eradicated in the T-DM1 (30 mg/kg) group, and no regrowth was observed in a long time after the termination of the treatment. In the peritoneal xenograft model, tumor nodules in 3 of 7 mice were hardly observed in the abdominal cavity of mice after intraperitoneal injection of T-DM1 (30 mg/kg). At the same time, tumor nodules from the other 4 mice weighed on the average of only 0.07 g versus 1.77 g in control group.ConclusionsOur data showed that T-DM1 possessed promising antitumor effects on HER2-overexpressing ovarian cancer in mouse model, which provided valuable references for the future clinical trials.


2019 ◽  
Vol 18 (9) ◽  
pp. 1323-1329 ◽  
Author(s):  
Gabriela Molinari Roberto ◽  
Helder Henrique Paiva ◽  
Lucas Eduardo Botelho de Souza ◽  
Julia Alejandra Pezuk ◽  
Gabriela Maciel Vieira ◽  
...  

Background and Purpose: Glioblastoma (GBM) is the most aggressive brain tumor. Even with the advent of temozolomide, patient survival remains poor, with expected median survival around 1 year from diagnosis. Consequently, the relentless search for new therapeutic strategies able to increase patient outcome persists. 3-[(dodecylthiocarbonyl) methyl] glutarimide (DTCM-g) is a new anti-inflammatory compound that already showed antitumor effects. Materials and Methods: Clonogenic survival, proliferation, apoptosis, cell cycle progression and invasion capacity of pediatric and adult GBM cell lines (U87MG, U251MG, SF188 and KNS-42) were evaluated under treatment with DTCM-g. The combined treatment with radiation was also evaluated in vitro and in vivo through xerographic models. Results: DTCM-g is able to impair proliferation, reduce clonogenic capacity and induce cell cycle arrest in GBM cell lines. No alteration in apoptosis rates was found after treatment. DTCM-g also reduces the invasion capacity of all GBM cell lines without alterations in MMP2 and uPa expression. Moreover, the drug radiosensitized GBM in vitro and in vivo. Conclusion: Although additional studies are still necessary to support our findings, our results suggest that DTCM-g may be a promising drug on the adjuvant treatment of GBM exhibiting antitumor effects, especially through radiosensitization.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 506
Author(s):  
Mohamed R. Abdelaal ◽  
Sameh H. Soror ◽  
Mohamed R. Elnagar ◽  
Hesham Haffez

(1) Background and Aim: All-trans retinoic acid (ATRA) induces differentiation and inhibits growth of many cancer cells. However, resistance develops rapidly prompting the urgent need for new synthetic and potent derivatives. EC19 and EC23 are two synthetic retinoids with potent stem cell neuro-differentiation activity. Here, these compounds were screened for their in vitro antiproliferative and cytotoxic activity using an array of different cancer cell lines. (2) Methods: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, AV/PI (annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)), cell cycle analysis, immunocytochemistry, gene expression analysis, Western blotting, measurement of glutamate and total antioxidant concentrations were recruited. (3) Results: HepG2, Caco-2, and MCF-7 were the most sensitive cell lines; HepG2 (ATRA; 36.2, EC19; 42.2 and EC23; 0.74 µM), Caco-2 (ATRA; 58.0, EC19; 10.8 and EC23; 14.7 µM) and MCF-7 (ATRA; 99.0, EC19; 9.4 and EC23; 5.56 µM). Caco-2 cells were selected for further biochemical investigations. Isobologram analysis revealed the combined synergistic effects with 5-fluorouracil with substantial reduction in IC50. All retinoids induced apoptosis but EC19 had higher potency, with significant cell cycle arrest at subG0-G1, -S and G2/M phases, than ATRA and EC23. Moreover, EC19 reduced cellular metastasis in a transwell invasion assay due to overexpression of E-cadherin, retinoic acid-induced 2 (RAI2) and Werner (WRN) genes. (4) Conclusion: The present study suggests that EC-synthetic retinoids, particularly EC19, can be effective, alone or in combinations, for potential anticancer activity to colorectal cancer. Further in vivo studies are recommended to pave the way for clinical applications.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1300-1300
Author(s):  
Yuankai Shi ◽  
Jianfei Wang ◽  
Xiaohong Han ◽  
Ningning Zhang ◽  
Shuai Wang ◽  
...  

Abstract Background The nuclear export protein chromosomal region maintenance 1 (CRM1) may play a role in human neoplasia and serve as a novel target for cancer treatment. Investigators recently developed orally bioavailable selective inhibitors of nuclear export (SINEs) that irreversibly bind to CRM1 and block its function. Our objective was to evaluate the therapeutic efficacy of the novel SINEs KPT-185 and KPT-276 against NHL in vitro and in vivo and elucidate the mechanism of CRM1 inhibitor-mediated antitumor activity. Methods Cell viability, apoptosis and cell cycle were evaluated in 8 B and T cell lymphoma cell lines (Jeko-1, Mino, Granta519, Sp53, RL, Hut102, Hut78 and Jurkat) which were treated with KPT-185; Primary tumor cells from 5 patients and normal human lymphocytes from 2 healthy volunteers were treated directly with KPT-185. Tumor suppressor proteins were detected by western blot to explore the possible mechanisms of KPT-185 inducing lymphoma cells growth inhibition and apoptosis. BALB/c nude mice bearing Jeko-1 tumors were treated orally with KPT-276 (similar structure to KPT-185, but improved animal pharmacokinetics) to examine the efficacy and side-effects of KPT-276. Results KPT-185 displayed potent antiproliferative properties at submicromolar concentrations (half-maximal inhibitory concentrations, 60-120 nM) and induced cell-cycle arrest and apoptosis in NHL cell lines and normal lymphocytes. The antitumor activity mainly consisted of regulating cell growth and apoptosis mechanisms by inducing caspase cleavage and downregulating the expression of antiapoptotic proteins such as CRM1, nuclear factor-kB, and survivin. Furthermore, oral administration of KPT-276 significantly suppressed tumor growth and prolonged survival in mice with NHL xenografts without any major toxic effects (P < 0.001). Analysis of tumor remnants in the mice demonstrated that KPT-276 trapped the antiapoptoic protein survivin within the nuclei of NHL cells. Conclusions We observed the biologic and pharmacologic activity of CRM1-inhibiting SINEs in NHL cells, primary NHL tumor samples, and a murine NHL xenograft model. SINE CRM1 inhibitors inhibited growth of lymphoma cells both in vitro and in vivo. The antitumor activity of the SINEs resulted primarily from induction of caspase activity and downregulation of expression of antiapoptoic proteins such as survivin and NF-kB. The preclinical in vitro and in vivo results reported herein support further study of CRM1-inhibiting SINEs as novel therapeutics for NHL. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Neil Portman ◽  
Heloisa H. Milioli ◽  
Sarah Alexandrou ◽  
Rhiannon Coulson ◽  
Aliza Yong ◽  
...  

AbstractBackgroundResistance to endocrine therapy is a major clinical challenge in the management of estrogen receptor (ER)-positive breast cancer. In this setting p53 is frequently wildtype and its activity may be suppressed via upregulation of its key regulator MDM2. This underlies our rationale to evaluate MDM2 inhibition as a therapeutic strategy in treatment resistant ER-positive breast cancer.MethodsWe used the MDM2 inhibitor NVP-CGM097 to treat in vitro and in vivo models alone and in combination with fulvestrant or palbociclib. We perform cell viability, cell cycle, apoptosis and senescence assays to evaluate antitumor effects in p53 wildtype and p53 mutant ER positive cell lines (MCF-7, ZR75-1, T-47D) and MCF-7 lines resistant to endocrine therapy and to CDK4/6 inhibition. We further assess the drug effects in patient-derived xenograft (PDX) models of endocrine-sensitive and -resistant ER positive breast cancer.ResultsWe demonstrate that MDM2 inhibition results in cell cycle arrest and increased apoptosis in p53-wildtype in vitro and in vivo breast cancer models, leading to potent anti-tumour activity. We find that endocrine therapy or CDK4/6 inhibition synergises with MDM2 inhibition but does not further enhance apoptosis. Instead, combination treatments result in profound regulation of cell cycle-related transcriptional programmes, with synergy achieved through increased antagonism of cell cycle progression. Combination therapy pushes cell lines resistant to fulvestrant or palbociclib to become senescent and significantly reduces tumour growth in a fulvestrant resistant patient derived xenograft model.ConclusionsWe conclude that MDM2 inhibitors in combination with ER degraders or CDK4/6 inhibitors represent a rational strategy for treating advanced, endocrine resistant ER-positive breast cancer, operating through synergistic activation of cell cycle co-regulatory programs.


2020 ◽  
Vol 19 (16) ◽  
pp. 2010-2018
Author(s):  
Youstina W. Rizzk ◽  
Ibrahim M. El-Deen ◽  
Faten Z. Mohammed ◽  
Moustafa S. Abdelhamid ◽  
Amgad I.M. Khedr

Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document