Phase I study of ursodeoxycholic acid in combination with 5-fluorouracil, leucovorin, oxaliplatin, and bevacizumab for metastatic colorectal cancer.

2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 569-569
Author(s):  
Lily L. Lai ◽  
Ken Chiu ◽  
Dean Lim ◽  
Joseph Chao ◽  
Paul Henry Frankel

569 Background: Emerging data links cancer growth with aberrant metabolism. These findings suggest that treatment directed against CRC metabolism may improve survival outcomes. Bile acids are involved in the metabolism of cholesterol and glucose. The bile acid, ursodeoxycholic acid (UDCA), protects against intestinal polyp development in animal and human studies. UDCA effects may be mediated through the nuclear receptor, farnesoid X receptor (FXR), since bile acids are the receptor’s endogenous ligands. FXR is a tumor suppressor in mouse models and a prognostic biomarker in patients with CRC. Bile acid activation of FXR in mouse models suppresses intestinal tumorigenesis. We sought to determine dose and safety of UDCA when added to standard therapy for mCRC. Methods: Patients with mCRC were accrued to an institutionally approved Phase I study. At the end of a 7-day run-in period of oral UDCA, standard doses of 5-fluorouracil, leucovorin, oxaliplatin, and bevacizumab were added. UDCA doses were escalated using a 3+3 design to determine MTD. The use of a run-in period allowed for correlative studies to identify serum biomarkers of FXR activation. Results: 11 patients were treated on three dose levels (250, 500, and 750 mg/day in divided doses). Patients were treated on protocol for a median time of 6 months with a median follow-up of 15 months. Patients were taken off protocol for progression of disease (n = 7); for declining performance status (n = 1); for toxicity (n=1); for patient refusal (n= 1). One patient remains on protocol at this time. No Grade 4 or higher toxicity was identified. Grade 3 toxicities were recorded in 5 patients; the majority was hematologic. Oral glucose tolerance tests, serum glucose and insulin levels, and serum FGF-19 were determined before and after UDCA treatment. Conclusions: UDCA, given with standard chemotherapy and biologic treatment, is safe and well tolerated in patients with mCRC. Further studies are needed to determine the efficacy of targeting FXR and cancer metabolism in mCRC. Supported by a grant from The Phase One Foundation. Clinical trial information: NCT00873275.

2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Sarah Tremblay ◽  
Guillaume Romain ◽  
Mélisange Roux ◽  
Xi-Lin Chen ◽  
Kirsty Brown ◽  
...  

ABSTRACT In addition to their chemical antimicrobial nature, bile acids are thought to have other functions in the homeostatic control of gastrointestinal immunity. However, those functions have remained largely undefined. In this work, we used ileal explants and mouse models of bile acid administration to investigate the role of bile acids in the regulation of the intestinal antimicrobial response. Mice fed on a diet supplemented with 0.1% chenodeoxycholic acid (CDCA) showed an upregulated expression of Paneth cell α-defensins as well as an increased synthesis of the type-C lectins Reg3b and Reg3g by the ileal epithelium. CDCA acted on several epithelial cell types, by a mechanism independent from farnesoid X receptor (FXR) and not involving STAT3 or β-catenin activation. CDCA feeding did not change the relative abundance of major commensal bacterial groups of the ileum, as shown by 16S analyses. However, administration of CDCA increased the expression of ileal Muc2 and induced a change in the composition of the mucosal immune cell repertoire, decreasing the proportion of Ly6G+ and CD68+ cells, while increasing the relative amount of IgGκ+ B cells. Oral administration of CDCA to mice attenuated infections with the bile-resistant pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium, promoting lower systemic colonization and faster bacteria clearance, respectively. Our results demonstrate that bile acid signaling in the ileum triggers an antimicrobial program that can be potentially used as a therapeutic option against intestinal bacterial infections.


2017 ◽  
Vol 35 (3) ◽  
pp. 246-250 ◽  
Author(s):  
Annika Wahlström ◽  
Petia Kovatcheva-Datchary ◽  
Marcus Ståhlman ◽  
Fredrik Bäckhed ◽  
Hanns-Ulrich Marschall

Background: The gut microbiota has a substantial impact on health and disease. The human gut microbiota influences the development and progression of metabolic diseases; however, the underlying mechanisms are not fully understood. The nuclear farnesoid X receptor (FXR), which regulates bile acid homeostasis and glucose and lipid metabolism, is activated by primary human and murine bile acids, chenodeoxycholic acid and cholic acid, while rodent specific primary bile acids tauromuricholic acids antagonise FXR activation. The gut microbiota deconjugates and subsequently metabolises primary bile acids into secondary bile acids in the gut and thereby changes FXR activation and signalling. Key Message: Mouse models have been used to study the crosstalk between bile acids and the gut microbiota, but the substantial differences in bile acid composition between humans and mice need to be considered when interpreting data from such studies and for the development of so-called humanised mouse models. Conclusion: It is of special importance to elucidate how a human gut microbiota influences bile acid composition and FXR signalling in colonised mice.


2013 ◽  
Vol 304 (4) ◽  
pp. G371-G380 ◽  
Author(s):  
Matthew J. Potthoff ◽  
Austin Potts ◽  
Tianteng He ◽  
João A. G. Duarte ◽  
Ronald Taussig ◽  
...  

Bile acid sequestrants are nonabsorbable resins designed to treat hypercholesterolemia by preventing ileal uptake of bile acids, thus increasing catabolism of cholesterol into bile acids. However, sequestrants also improve hyperglycemia and hyperinsulinemia through less characterized metabolic and molecular mechanisms. Here, we demonstrate that the bile acid sequestrant, colesevelam, significantly reduced hepatic glucose production by suppressing hepatic glycogenolysis in diet-induced obese mice and that this was partially mediated by activation of the G protein-coupled bile acid receptor TGR5 and glucagon-like peptide-1 (GLP-1) release. A GLP-1 receptor antagonist blocked suppression of hepatic glycogenolysis and blunted but did not eliminate the effect of colesevelam on glycemia. The ability of colesevelam to induce GLP-1, lower glycemia, and spare hepatic glycogen content was compromised in mice lacking TGR5. In vitro assays revealed that bile acid activation of TGR5 initiates a prolonged cAMP signaling cascade and that this signaling was maintained even when the bile acid was complexed to colesevelam. Intestinal TGR5 was most abundantly expressed in the colon, and rectal administration of a colesevelam/bile acid complex was sufficient to induce portal GLP-1 concentration but did not activate the nuclear bile acid receptor farnesoid X receptor (FXR). The beneficial effects of colesevelam on cholesterol metabolism were mediated by FXR and were independent of TGR5/GLP-1. We conclude that colesevelam administration functions through a dual mechanism, which includes TGR5/GLP-1-dependent suppression of hepatic glycogenolysis and FXR-dependent cholesterol reduction.


2012 ◽  
Vol 302 (1) ◽  
pp. E68-E76 ◽  
Author(s):  
Lihong Chen ◽  
Xiaozhou Yao ◽  
Andrew Young ◽  
Judi McNulty ◽  
Don Anderson ◽  
...  

Bile acids are recognized as metabolic modulators. The present study was aimed at evaluating the effects of a potent Asbt inhibitor (264W94), which blocks intestinal absorption of bile acids, on glucose homeostasis in Zucker Diabetic Fatty (ZDF) rats. Oral administration of 264W94 for two wk increased fecal bile acid concentrations and elevated non-fasting plasma total Glp-1. Treatment of 264W94 significantly decreased HbA1c and glucose, and prevented the drop of insulin levels typical of ZDF rats in a dose-dependent manner. An oral glucose tolerance test revealed up to two-fold increase in plasma total Glp-1 and three-fold increase in insulin in 264W94 treated ZDF rats at doses sufficient to achieve glycemic control. Tissue mRNA analysis indicated a decrease in farnesoid X receptor (Fxr) activation in small intestines and the liver but co-administration of a Fxr agonist (GW4064) did not attenuate 264W94 induced glucose lowering effects. In summary, our results demonstrate that inhibition of Asbt increases bile acids in the distal intestine, promotes Glp-1 release and may offer a new therapeutic strategy for type 2 diabetes mellitus.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1104
Author(s):  
Cong Xie ◽  
Weikun Huang ◽  
Richard L. Young ◽  
Karen L. Jones ◽  
Michael Horowitz ◽  
...  

Bile acids are cholesterol-derived metabolites with a well-established role in the digestion and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5 signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure, and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2029 ◽  
Author(s):  
John YL Chiang

Bile acids are derived from cholesterol to facilitate intestinal nutrient absorption and biliary secretion of cholesterol. Recent studies have identified bile acids as signaling molecules that activate nuclear farnesoid X receptor (FXR) and membrane G protein-coupled bile acid receptor-1 (Gpbar-1, also known as TGR5) to maintain metabolic homeostasis and protect liver and other tissues and cells from bile acid toxicity. Bile acid homeostasis is regulated by a complex mechanism of feedback and feedforward regulation that is not completely understood. This review will cover recent advances in bile acid signaling and emerging concepts about the classic and alternative bile acid synthesis pathway, bile acid composition and bile acid pool size, and intestinal bile acid signaling and gut microbiome in regulation of bile acid homeostasis.


2020 ◽  
Vol 46 (1) ◽  
pp. 83-88
Author(s):  
N. B. Gubergrits ◽  
N.V. Byelyayeva ◽  
T. L. Mozhyna ◽  
G. M. Lukashevich ◽  
P. G. Fomenko

After the discovery of the method of ursodeoxycholic acid’s (UDCA) synthesis and the publication of evidence confirming its ability to reduce the lithogenic properties of bile, active clinical use of UDCA began in the world. This drug, which has pleiotropic effect (choleretic, cytoprotective, immunomodulatory, antiapoptic, litholytic, hypocholesterolemic), has proven its effectiveness in the treatment various diseases: primary biliary cholangitis, intrahepatic cholestasis of pregnancy, gallstone disease. Being a tertiary bile acid, UDCA stimulates bile acid synthesis by reducing the circulating fibroblast growth factor 19 and inhibiting the activation of the farnesoid X-receptor (FXR), which leads to the induction of cholesterol-7α-hydroxylase, a key enzyme in the synthesis of bile acid de novo, mediating the conversion of cholesterol into bile acids. Changes in the formation of bile acids and cholesterol while taking UDCA intake is accompanied by activation of the main enzyme of cholesterol synthesis - 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under the influence of UDCA the activity of stearoyl-Coa desaturase (SCD) in visceral white adipose tissue increases. According to studies conducted in 2019, UDCA improves lipid metabolism by regulating the activity of the ACT/mTOR signaling pathway, reduces the synthesis of cholesterol, decreases the fractional synthesis rate of cholesterol and the fractional synthesis rate of triglycerides. It has been proved that UDCA is accompanied by a decrease in the level of total cholesterol and low density lipoprotein cholesterol.


Doctor Ru ◽  
2020 ◽  
Vol 19 (7) ◽  
pp. 21-30
Author(s):  
N.B. Gubergritz ◽  
◽  
N.V. Belyaeva ◽  
T.L. Mozhina ◽  
N.E. Monogarova ◽  
...  

Objective of the Review: to analyse changes in bile acids (BA) metabolism due to nonalcoholic fatty liver disease (NAFL), nonalcoholic fatty pancreas disease (NAFP); to assess the efficiency of ursodeoxycholic acid (UDCA) for their correction. Key Points. NAFL and NAFP have much in common, including BA synthesis imbalance and reduced farnesoid X receptor (FXR) expression. One possible therapy of NAFL and NAFP is BA synthesis correction and increase in FXR expression using FXR agonists. The article discusses clinical and experimental trials of the efficiency of selective FXR agonist — UDCA — in NAFL and NAFP. Conclusion. The multifactorial UDCA mechanism of action including anti-inflammatory, antioxidant, cytoprotective and antiapoptotic actions, can normalise carbohydrate, lipid metabolism and activate FXR; it can justify medicine inclusion into NAFL and NAFP therapeutic regimens. Keywords: nonalcoholic fatty liver disease, nonalcoholic fatty pancreas disease, ursodeoxycholic acid.


Author(s):  
Peijie Wu ◽  
Ling Qiao ◽  
Han Yu ◽  
Hui Ming ◽  
Chao Liu ◽  
...  

Cholestasis is a kind of stressful syndrome along with liver toxicity, which has been demonstrated to be related to fibrosis, cirrhosis, even cholangiocellular or hepatocellular carcinomas. Cholestasis usually caused by the dysregulated metabolism of bile acids that possess high cellular toxicity and synthesized by cholesterol in the liver to undergo enterohepatic circulation. In cholestasis, the accumulation of bile acids in the liver causes biliary and hepatocyte injury, oxidative stress, and inflammation. The farnesoid X receptor (FXR) is regarded as a bile acid–activated receptor that regulates a network of genes involved in bile acid metabolism, providing a new therapeutic target to treat cholestatic diseases. Arbutin is a glycosylated hydroquinone isolated from medicinal plants in the genus Arctostaphylos, which has a variety of potentially pharmacological properties, such as anti-inflammatory, antihyperlipidemic, antiviral, antihyperglycemic, and antioxidant activity. However, the mechanistic contributions of arbutin to alleviate liver injury of cholestasis, especially its role on bile acid homeostasis via nuclear receptors, have not been fully elucidated. In this study, we demonstrate that arbutin has a protective effect on α-naphthylisothiocyanate–induced cholestasis via upregulation of the levels of FXR and downstream enzymes associated with bile acid homeostasis such as Bsep, Ntcp, and Sult2a1, as well as Ugt1a1. Furthermore, the regulation of these functional proteins related to bile acid homeostasis by arbutin could be alleviated by FXR silencing in L-02 cells. In conclusion, a protective effect could be supported by arbutin to alleviate ANIT-induced cholestatic liver toxicity, which was partly through the FXR pathway, suggesting arbutin may be a potential chemical molecule for the cholestatic disease.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Amulya Lingaraju ◽  
Stephany Flores Ramos ◽  
Emily Gentry ◽  
Orit Poulsen ◽  
Pieter C Dorrestein ◽  
...  

Obstructive sleep apnea (OSA) is an independent exacerbator of cardiovascular disease (CVD). However, it is unclear how OSA or it’s characteristic components, intermittent hypoxia and hypercapnia (IHC), increase CVD risk. Our previous work has shown that IHC reproducibly changes the gut microbiome dynamics in murine models of atherosclerosis and that these changes could affect host cardiovascular physiology through bile acids and phosphocholines. In our initial targeted metabolomics approach, changes in particular bile acids, such as taurocholic acid, taurodeoxycholic acid, and muricholic acid, were associated with and were predictive of IHC exposure in atherosclerotic Ldlr-/- mice. In a more recent study, we identified the formation of novel, microbially-synthesized conjugated bile acids by the gut microbiome that are more potent farnesoid X receptor agonists than other previously described bile acids, and thus, potentially can affect atherosclerosis formation. To determine whether these novel bile acids are associated with IHC-induced atherosclerosis, we characterized luminal bile acid changes in Ldlr-/- mice in an OSA model. We hypothesize that IHC alters the amount of microbially-synthesized novel bile acids and that these bile acids are associated with IHC-induced atherosclerosis. To test this hypothesis, we subjected atherogenic diet-fed Ldlr-/- mice to either room-air (control) or IHC conditions (n=10/condition) and assessed atherosclerotic lesion formation after 12 weeks post-diet. Mice under IHC conditions had significantly higher aortic lesion formation compared to controls. Assessment of fecal bile acid metabolites indicated changes in novel bile acid levels under IHC conditions. Moreover, correlational analysis showed that these novel bile acid changes were positively correlated with atherosclerotic lesion amounts, mainly driven by IHC conditions. Our results demonstrate that bile acid changes through microbial biotransformations occur under IHC conditions and could be the mechanistic link between OSA-induced microbiome changes and atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document