ctDNA detection of EGFR mutations in NSCLC patients using TargetSelector.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23037-e23037
Author(s):  
Frans Beerkens ◽  
Chul Kim ◽  
Syed P. Hasan ◽  
Deepa Suresh Subramaniam ◽  
Stephen V. Liu ◽  
...  

e23037 Background: EGFR mutations are the most frequent targetable genomic alterations in non-small cell lung cancer (NSCLC) patients (pts). While tissue biopsy remains the standard for assessing of EGFR mutation status, it is invasive and not always feasible. Liquid biopsy is a minimally invasive alternative. Biocept’s proprietary TargetSelector system evaluates circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in blood. We aimed to clinically validate the accuracy of EGFR-specific TargetSelector in NSCLC pts. Methods: At three time points (T0: baseline before TKI, T1: during EGFR-TKI therapy, T2: after progression), blood samples were collected in Biocept OncoCEE BCT validated to preserve DNA up to 8 days. These samples were interrogated for three EGFR mutations: exon 19 deletions (Del 19), L858R, and T790M. The objectives are to assess detection sensitivity of liquid biopsy using EGFR mutation status vs the tissue as gold standard and to evaluate whether the detection sensitivity changes with EGFR-TKI therapy. Results: A total of 53 study pts were enrolled (male, 21; female, 32). The mean age was 70.6 (range: 46 – 90). Most pts had stage IV disease (43, 81.1%) and lung adenocarcinoma (48, 90.6%). 26 (49.1%) pts had EGFR mutations in tumor tissue: Del 19, 13; L858R, 8; T790M, 6; other, 8. Detection sensitivity for sensitizing EGFR mutations (Del 19 and L858R) at T0, T1, and T2 was 60.0% (6/10), 33.3% (5/15), and 33.3% (1/3), respectively. There was no statistical difference in CTC counts between activating EGFR mutation-positive and -negative pts (mean CTC count: 10.5 vs 20.1; p = 0.11 by two-sided t-test). Detection sensitivity for T790M was 33.3% (2/6) and 5 of 6 pts were receiving T790M directed therapy (3, rociletinib; 2, osimertinib) at the time of blood draw. Two pts – one patient before initiation of EGFR-TKI and the other during treatment with erlotinib – were found to have T790M mutations only in blood and not in tissue. Conclusions: Activating EGFR mutation detection may decrease during the course of TKI therapy, possibly due to treatment response. Further research with an expanded sample size and serial collections are needed to evaluate this finding, and to investigate possible implications of the presence of T790M only in blood.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20638-e20638
Author(s):  
Sook-hee Hong ◽  
Ho Jung An ◽  
Yun-Gyoo Lee ◽  
Hoon-Kyo Kim ◽  
Seung-Sei Lee ◽  
...  

e20638 Background: Anti-angiogenic agents have been reported to have clinical activity for NSCLC harboring EGFR mutation (mutEGFR) with/without EGFR Tyrosine kinase inhibitor (TKI). We report clinical outcomes of nintedanib plus docetaxel for refractory NSCLC patients conducted by virtue of Korean NPU program. Methods: Patients with NSCLC were eligible if they failed at least one prior systemic treatment. Docetaxel was administered with 75 or 60mg/m2 on D1 or 37.5mg/m2 on D1, D8 every 3 weeks plus nintedanib 200mg orally twice daily. Nintedanib treatment was continued until disease progression or unacceptable toxicity after 4-6 cycles of combination therapy. Results: Of 62 patients enrolled, 23 patients had activating EGFR mutations (14 in exon19 deletion, 7 exon21 L858R/L861Q, 1 exon20 duplication, and 1 in both exon19 deletion and exon20 T790M) and progressed during prior EGFR-TKI treatment. Of 23 patients, 22 had progressed during or after platinum doublet chemotherapy. Only for 2 patients, EGFR mutation status was unknown. The majority of patients were heavily pretreated, with 43.7% received nintedanib plus docetaxel as ≥ 4th line therapy. 4 patients had prior bevacizumab treatment. Objective response rate (ORR) was 22.9%. Median PFS and OS were 3.9 months (95% CI 3.1-4.6) and 9.5 months (95% CI 5.3-13.7), respectively. Depending on EGFR mutation status, ORR in mutEGFR group was higher than wtEGFR group (30.4% vs 20%, p= 0.50) and median PFS in mutEGFR group was significantly longer than wtEGFR group (6.1 vs 3.3 months, p= 0.008). No treatment related death was reported. Common grade 3/4 adverse events were neutropenia (58.3%) and reversible elevated liver enzyme (18.8%). Conclusions: Taken together, nintedanib plus docetaxel showed meaningful clinical activity with good tolerability for refractory NSCLC patients. Our data suggest that this combination may be a recommendable regimen for EGFR-TKI-resistant mutEGFR NSCLC.


Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 803 ◽  
Author(s):  
Ming-Szu Hung ◽  
Jr-Hau Lung ◽  
Yu-Ching Lin ◽  
Yu-Hung Fang ◽  
Shu-Yi Huang ◽  
...  

Mutations in the epidermal growth factor receptor (EGFR) are associated with various solid tumors. This study aimed to compare two methods for the detection of EGFR mutations in circulating tumor DNA (ctDNA) from lung adenocarcinoma (LUAD) patients and to evaluate the clinical significance of EGFR mutations in ctDNA. In this prospective cohort study, the EGFR mutation status of 77 patients with stage IIIB or IV LUAD was first determined using lung cancer tissue. The amplification refractory mutation system (ARMS) and single allele base extension reaction combined with mass spectroscopy (SABER/MassARRAY) methods were also used to detect EGFR mutations in plasma ctDNA from these patients and then compared using the EGFR mutation status in lung cancer tissue as a standard. Furthermore, the relationship between the presence of EGFR mutations in ctDNA after receiving first-line EGFR-tyrosine kinase inhibitor (EGFR-TKI) therapy and survival was evaluated. The overall sensitivity and specificity for the detection of EGFR mutations in plasma ctDNA by ARMS and SABER/MassARRAY were 49.1% vs. 56% and 90% vs. 95%, respectively. The agreement level between these methods was very high, with a kappa-value of 0.88 (95% CI 0.77–0.99). Moreover, 43 of the patients who carried EGFR mutations also received first-line EGFR-TKI therapy. Notably, patients with EGFR mutations in plasma ctDNA had significantly shorter progression-free survival (9.0 months, 95% CI 7.0–11.8, vs. 15.0 months, 95% CI 11.7–28.2; p = 0.02) and overall survival (30.6 months, 95% CI 12.4–37.2, vs. 55.6 months, 95% CI 25.8–61.8; p = 0.03) compared to those without detectable EGFR mutations. The detection of EGFR mutations in plasma ctDNA is a promising, minimally invasive, and reliable alternative to tumor biopsy, and the presence of EGFR mutations in plasma ctDNA after first-line EGFR-TKI therapy is associated with poor prognosis.


2020 ◽  
Vol 9 (8) ◽  
pp. 2642
Author(s):  
Won Jin Chang ◽  
Jae Sook Sung ◽  
Sung Yong Lee ◽  
Eun Joo Kang ◽  
Nak-Jung Kwon ◽  
...  

Mutations in the EGFR gene downstream signaling pathways may cause receptor-independent pathway activation, making tumors unresponsive to EGFR inhibitors. However, the clinical significance of RAS, PIK3CA or PTEN mutations in NSCLC is unclear. In this study, patients who were initially diagnosed with NSCLC or experienced recurrence after surgical resection were enrolled, and blood samples was collected. Ultra-deep sequencing analysis of cfDNA using Ion AmpliSeq Cancer Hotspot Panel v2 with Proton platforms was conducted. RAS/PIK3CA/PTEN mutations were frequently detected in cfDNA in stage IV NSCLC (58.1%), and a high proportion of the patients (47.8%) with mutations had bone metastases at diagnosis. The frequency of RAS/PIK3CA/PTEN mutations in patients with activating EGFR mutation was 61.7%. The median PFS for EGFR-TKIs was 15.1 months in patients without RAS/PIK3CA/PTEN mutations, and 19.9 months in patients with mutations (p = 0.549). For patients with activating EGFR mutations, the overall survival was longer in patients without RAS/PIK3CA/PTEN mutations (53.8 months vs. 27.4 months). For the multivariate analysis, RAS/PIK3CA/PTEN mutations were independent predictors of poor prognosis in patients with activating EGFR mutations. In conclusion, RAS, PIK3CA and PTEN mutations do not hamper EGFR-TKI treatment outcome; however, they predict a poor OS when activating EGFR mutations coexist.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e18127-e18127
Author(s):  
Kazutoshi Isobe ◽  
Yoshinobu Hata ◽  
Keita Sato ◽  
Keishi Sugino ◽  
Go Sano ◽  
...  

e18127 Background: This study assessed correlations between the presence of circulating tumor cells (CTCs), detection of T790M in organs with metastases or circulating-free DNA (cfDNA), and prognosis in metastatic NSCLC patients with acquired resistance to EGFR-TKI. Methods: Metastatic NSCLC patients with activating EGFR mutations, who initially responded but subsequently experienced disease progression while on EGFR-TKI treatment, were defined as having ‘acquired resistance’. Blood samples were collected after development of such acquired resistance and CTCs were counted using the CellSearch system (Veridex). At the same time, T790M in affected organs or cfDNA was analyzed with cycleave real-time PCR assay and fragment analysis. Results: : Six men and 14 women with a mean age of 63.5 yrs (22-84) were enrolled. Histological subtypes were adenocarcinoma in 19 and squamous cell carcinoma in the remaining one. Clinical stages were stage IV in 14 and recurrence with distant metastases after surgical resection in 6. EGFR mutations in tumors at the primary site were G719C in 1, exon 19 deletion in 7, L858R in 10, and G791C + L858R in 2. CTCs were detected in 8 (40%). Numbers of CTCs (per 7.5 ml blood) were 1 in 4 cases, and 3, 4, 8, and 24 in 1 case each. Patients without CTCs survived significantly longer than those with CTCs (≥1 per 7.5 ml). Mean survival time from first detection of CTCs was 3.0 months in patients with CTCs and not reached in patients without CTCs (p < 0.001). T790M was detected in 6 cases (30%). T790M was found in 75% (n = 6/8) of patients without CTCs but in 0% (n = 0/12) of those with CTCs (p < 0.05). Conclusions: The presence of CTCs was correlated with poorly prognosis and lack of T790M in affected organs or cfDNA. The presence of CTCs was informative for distinguishing patients with or without T790M.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e18035-e18035
Author(s):  
Zhijie Wang ◽  
Jie Wang ◽  
Yi Long Wu ◽  
Hua Bai ◽  
Xu-Chao Zhang ◽  
...  

e18035 Background: EML4-ALK rearrangement defines a new molecular subtype of non-small-cell lung cancer (NSCLC). To identify the biological profiles of these patients, we examined the clinico-pathologic characteristics and treatment outcomes of NSCLC patients based on EML4-ALK and EGFR mutations. Methods: Patients with stage IV NSCLC were screened for EML4-ALK rearrangement and EGFR mutations at Peking University Cancer Hospital. EML4-ALK was identified using fluorescent in situ hybridization (FISH) confirmed by immunohistochemistry (IHC), and EGFR mutations were determined using denaturing high-performance liquid chromatography (DHPLC). Results: Of the 151 patients screened, 113 had complete follow-up data as an analysis set. The incidence of EML4-ALK was 9.7% (11/113) using FISH, in which 10 cases had sufficient specimens for IHC confirmation and all were positive. Overall, EML4-ALK and EGFR mutations were largely mutually exclusive (p = 0.033), although two patients harbored concurrent mutations. EML4-ALK rearrangement was associated with resistance to EGFR-TKIs compared with the EGFR mutant type and WT/Nonrearrangement type (p = 0.001 for objective response rate; p = 0.004 for disease control rate; p = 0.021 for progression-free survival [PFS]). In terms of patients who received platinum-based doublet chemotherapy, no significant differences were observed in PFS between the EML4-ALK type, EGFR mutant type, and WT/Nonrearrangement type. Moreover, two patients with concurrent EML4-ALK and EGFR mutations had superior PFS after EGFR-TKI compared with single EML4-ALK-rearranged patients. Conclusions: This study presents several biological features of EML4-ALK NSCLC. It is largely mutually exclusive to EGFR mutations, resistant to EGFR-TKI. Coexistence of ALK rearrangement and EGFR mutation in patients with advanced NSCLC might represent a separate genotype with unique biological characteristics.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20032-e20032
Author(s):  
Qin Feng

e20032 Background: Tumor tissue is currently used for EGFR testing non-small cell lung cancer (NSCLC) patients, but the detection of circulating tumor DNA (ctDNA) is being actively investigated as a new method for the detection and longitudinal monitoring of actionable mutations in plasma samples. Around 30% patients with EGFR mutation presented inconsistent status of EGFR mutation between in tissues and plasma. We compared EGFR mutation detection in circulating tumor DNA from blood to that in matched tissue. Methods: EGFR mutation status were assessed by the Human EGFR Gene Mutations Detection Kit (Beijing ACCB Biotech Ltd.) both in tissue and plasma. Retrospective analysis to evaluate the concordance of tissue and plasma EGFR determination for assessing eligibility for EGFR-TKIs therapy in NSCLC patients. 10 mL tubes of blood were collected from patients who never had been treated by EGFR TKI, and plasma circulating tumor DNA were extracted from plasma by Biomark Circulating DNA Kit. Qubit2.0 Fluorometer was used to make plasma circulating DNA tumor quantitation. The concentration of final DNA sample is ≦2ng/μl. Results: A total of 224 NSCLC patients were detected by Amplification Refractory Mutation System (ARMS), with 92 tissue positive and 49 blood positive. Results showed 53.3% sensitivity in overall samples, but 81.4% sensitivity in ⅢB~Ⅲ patients. The specificity is 100%. Conclusions: The high sensitivity and specificity between tissue and plasma EGFR determination supports the blood-based EGFR mutation testing to determinate the eligibility of NSCLC patients for EGFR-TKIs treatment, especialy in ⅢB~Ⅲ NSCLC patients. Blood, in particular plasma, is a good screening substitute when tumor tissue is absent or insufficient for testing EGFR mutations to guide EGFR TKIs treatment in patients with NSCLC. EGFR mutation positivity in blood could be used to recommend EGFR TKIs treatment, but the blood negativity should be confirmed with other sample, biopsy tissue, pleural effusion, etc..


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e21641-e21641
Author(s):  
Giannis Socrates Mountzios ◽  
Dimitrios Mavroudis ◽  
Epaminondas Samantas ◽  
Anna Koumarianou ◽  
Evangelos Georgios Konstantinos Fergadis ◽  
...  

e21641 Background: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the gold standard 1st line strategy for non-small-cell lung cancer (NSCLC) patients with activating EGFR mutations (EGFRm), associated with improved survival outcomes and quality of life compared to chemotherapy. Despite the high response rate with first- and second- generation TKIs, most patients develop resistance to treatment and progress. The acquisition of T790M mutation in exon 20 is considered the most common resistance mechanism. This study aims to investigate the molecular epidemiology of EGFR resistance mutations, focusing on T790M in EGFRm NSCLC patients treated with TKIs. Methods: The study included patients with locally advanced/metastatic EGFRm NSCLC who have progressed on or after 1st line treatment with first- or second- generation TKI. Samples either from plasma-based liquid biopsy and/or tissue re-biopsy were analysed using the Cobas EGFR Mutation Test v2. All patients signed informed consent and were enrolled between July 2017 and September 2019. Statistical analyses were performed using SAS software, Version 9.4. Results: Ninety-six eligible patients were enrolled. At the time of progression, T790M mutation was detected in 16.7%of the patients using plasma-based liquid biopsies. Among patients with negative T790M result, in plasma, tissue re-biopsy was performed in 22,7% with evaluable/valid results in 72.2% of them. T790M mutation was identified in 38.5% of re-biopsy samples. According to Cobas EGFR Mutation test results (combined plasma and tissue), T790M mutation was identified in 21.9% of the patients. Of T790M-positive patients 42.9% had previously received first and 57.1% second generation EGFR-TKI. Conclusions: Results from this study in real world clinical setting in Greece, show that EGFR-T790M acquired resistance positivity rate in plasma is lower compared to previous reports. Moreover, these data underline the challenges of implementing precision medicine using tissue re-biopsy in advanced/metastatic NSCLC. Clinical trial information: D133FR00126. [Table: see text]


Author(s):  
Naiqun Wang ◽  
Xiaolian Zhang ◽  
Feilong Wang ◽  
Min Zhang ◽  
Bo Sun ◽  
...  

Epidermal growth factor receptor (EGFR) mutations are the most common carcinogenic driver mutations in non-small-cell lung cancer (NSCLC) patients, while invasive tissue biopsy has certain inherent defects. PubMed, Ovid Medline, Embase, and the Cochrane Library were systematically searched on January 4, 2020, using the keywords “liquid biopsy,” “EGFR,” and “NSCLC.” The pooled sensitivity and specificity of EGFR mutations in paired tissue and blood were calculated. The accuracy was assessed by receiver operating characteristic curve. The meta-regression of the subgroup was performed to analyze the heterogeneity. Hazard ratio (HR) and 95% confidence interval (CI) were combined for evaluating the impact of EGFR mutation in tissue and liquid blood biopsy. A total of 40 studies with 5,995 patients were involved in the study. The pooled sensitivity was 68% (95% CI = 60–75%), and the specificity was 98% (95% CI = 95–99%). The diagnostic odds ratio was 88 (95% CI = 40–195), and the area under the curve was 0.91 (95% CI = 0.88–0.93). In the meta-regression, the sensitivity and specificity remain lower in the Asian studies than non-Asian studies (sensitivity: 66% vs. 73%, P = 0.04; specificity: 96% vs. 97%, P = 0.03, respectively). The EGFR mutation was associated with a better progression-free survival than wild type in both tissue (HR = 0.54, 95% CI = 0.34–0.85, P = 0.007) and blood (HR = 0.81, 95% CI = 0.71–0.92, P = 0.001) detection. Peripheral blood liquid biopsy had a better specificity for detecting EGFR mutation in NSCLC patients, while tissue biopsy still needs to be undertaken for negative blood biopsy patients due to its lower sensitivity.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e18132-e18132
Author(s):  
Wen Shuo Wu ◽  
Yuh-Min Chen ◽  
Chun-Ming Tsai ◽  
Jen-Fu Shih ◽  
Yu-Chin Lee ◽  
...  

e18132 Background: EGFR-TKIs are effective against tumor EGFR-mutated NSCLC. Patients with tumor EGFR activating mutation (EGFRmu) (exon 19 deletions or exon 21 L958R) had better survival than those with EGFR wild-type tumors (EGFRwt). Many EGFRmu patients have had disease progression with EGFR-TKI treatment due to central nervous system (CNS) metastases, including meningeal carcinomatosis. The objective of this retrospective study is to compare the causes of death in patients with a known tumor EGFR mutation status who had been treated with EGFR-TKIs. Methods: We retrospectively reviewed the chart records of our advanced NSCLC patients who had received diagnosis, treatment, and supportive and hospice care in our hospital between July 2005 and June 2010. Tumor EGFR mutation status was analyzed using the DNA sequence method. All enrolled patients had a documented cause of death. Results: Ninety-four patients had documented tumor EGFR data, had received EGFR-TKI treatment (either erlotinib or gefitinib), and were with or without previous or salvage systemic chemotherapy. Of them, 36 were EGFRwt and 58 were EGFRmu. Overall survival after starting EGFR-TKI treatment was significantly longer in EGFRmu than in EGFRwt patients (median 68.9 weeks vs. 46.3 weeks, p=0.0058). Twenty-nine patients died of CNS metastases and 65 died of organ(s) failure other than the CNS. Patients who died of CNS metastases had undergone EKGF-TKI treatment significantly longer than those who died of other organ(s) failure (median 32 weeks vs. 7.7 weeks, p=0.0003), with a hazard ratio of 2.308 (95% C.I. 1.452-3.668, p=0.0004). A significantly higher proportion of EGFRmu patients died of CNS metastases (26 of 58, 44.8%) than EGFRwt patients (3 of 36, 8.3%) (p<0.001). Conclusions: EGFRmu NSCLC patients survived longer and had a significantly higher probability of mortality due to CNS metastases than EGFRwt patients. This change in the causes of death due to NSCLC was noted after an era of EGFR-TKI treatment, and will have an important impact on the strategies or management of patient supportive and hospice care.


Sign in / Sign up

Export Citation Format

Share Document