Phase 1 trial of CA-170, a novel oral small molecule dual inhibitor of immune checkpoints PD-1 and VISTA, in patients (pts) with advanced solid tumor or lymphomas.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. TPS3099-TPS3099 ◽  
Author(s):  
James J. Lee ◽  
John D. Powderly ◽  
Manish R. Patel ◽  
Joshua Brody ◽  
Erika Paige Hamilton ◽  
...  

TPS3099 Background: Programmed-death 1 (PD-1) and V-domain Ig suppressor of T-cell activation (VISTA) are independent immune checkpoints that negatively regulate T-cell function and are implicated in various malignancies. Preclinical studies have demonstrated that dual blockade of these pathways is synergistic. CA-170 is a first-in-class oral small molecule that directly targets both PD-1/PD-L1 and VISTA pathways and has shown anti-tumor activity in multiple preclinical models. Methods: The dose escalation phase has a target enrollment of 50 pts with advanced solid tumors or lymphomas onto escalating doses; the first four single-pt cohorts are accelerated titration but then switch to 3+3 design. The dose expansion phase has a target enrollment of 250 pts with select tumor types known to be responsive to anti-PD-1/L1 inhibitors and/or known to express PD-L1 or VISTA. Key eligibility criteria include: age ≥ 18 years, ECOG ≤1, adequate organ function, and ineligible for/did not respond to standard therapy including anti-PD-1/L1 inhibitors, where available. Primary objectives of this first-in-human study: safety, maximum tolerated dose, and recommended phase 2 dose. Secondary objectives: pharmacokinetics (PK) and anti-tumor activity. Exploratory endpoints: biomarkers and pharmacodynamic (PD) effects, which include changes in immune cell and peripheral cytokine populations in tumor (IHC/mRNA) and blood (flow cytometry/mRNA). Oral CA-170 is administered once daily in 21-day cycles. Response will be evaluated every other cycle per RECIST (v1.1) and Immune-related Response Criteria or by Cheson criteria (2007). Patients who discontinue treatment for reasons other than progressive disease will be followed for progression-free survival. Serial plasma, blood, and tumor samples will be collected for PK and PD evaluation. Clinical trial identifier: Clinical trial information: NCT02812875.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi129-vi129
Author(s):  
Marilin Koch ◽  
Mykola Zdioruk ◽  
M Oskar Nowicki ◽  
Estuardo Aguilar ◽  
Laura Aguilar ◽  
...  

Abstract RATIONALE Dexamethasone is frequently used in symptomatic treatment of glioma patients, although it is known to cause immune suppression. Checkpoint inhibitor immunotherapies have not yet been successful in glioma treatments. Gene-mediated cytotoxic immunotherapy (GMCI) is an immunotherapeutic approach that uses aglatimagene besadenovec with an anti-herpetic prodrug to induce immunogenic tumor cell death and immune cell attraction to the tumor site with potent CD8 T cell activation. GMCI is currently in clinical trials for solid tumors including glioblastoma, where it showed encouraging survival results in a Phase 2 study that did not limit the use of dexamethasone. However, the effects of dexamethasone on its efficacy have not been explored. METHODS We investigated the effects of dexamethasone on GMCI in vitro using cytotoxicity and T-cell-killing assays in glioblastoma cell lines. The impact of dexamethasone in vivo was assessed in an orthotopic syngeneic murine glioblastoma model. RESULTS Cyotoxicity assays showed that Dexamethasone has a slight impact on GMCI in vitro. In contrast, we observed a highly significant effect in T-cell-functional assays in which killing was greatly impaired. Immune cell response assays revealed a reduced T-cell proliferation after co-culture with supernatant from dexamethasone or combination treated glioblastoma cells in contrast to GMCI alone. In a murine model, the combination of GMCI and dexamethasone resulted in a significant reduction in median symptom-free survival (29d) in comparison to GMCI alone (39.5d) (P = 0.0184). CONCLUSION Our data suggest that high doses of dexamethasone may negatively impact the efficacy of immunotherapy for glioma, which may be a consequence of impaired T cell function. These results support the idea that there is a need in identifying possible alternatives to dexamethasone to maximize the effectiveness of immunostimulatory therapies such as GMCI.


2017 ◽  
Vol 313 (2) ◽  
pp. L406-L415 ◽  
Author(s):  
Gene T. Yocum ◽  
Damian L. Turner ◽  
Jennifer Danielsson ◽  
Matthew B. Barajas ◽  
Yi Zhang ◽  
...  

Emerging evidence indicates that hypnotic anesthetics affect immune function. Many anesthetics potentiate γ-aminobutyric acid A receptor (GABAAR) activation, and these receptors are expressed on multiple subtypes of immune cells, providing a potential mechanistic link. Like immune cells, airway smooth muscle (ASM) cells also express GABAARs, particularly isoforms containing α4-subunits, and activation of these receptors leads to ASM relaxation. We sought to determine if GABAAR signaling modulates the ASM contractile and inflammatory phenotype of a murine allergic asthma model utilizing GABAAR α4-subunit global knockout (KO; Gabra40/0) mice. Wild-type (WT) and Gabra4 KO mice were sensitized with house dust mite (HDM) antigen or exposed to PBS intranasally 5 days/wk for 3 wk. Ex vivo tracheal rings from HDM-sensitized WT and Gabra4 KO mice exhibited similar magnitudes of acetylcholine-induced contractile force and isoproterenol-induced relaxation ( P = not significant; n = 4). In contrast, in vivo airway resistance (flexiVent) was significantly increased in Gabra4 KO mice ( P < 0.05, n = 8). Moreover, the Gabra4 KO mice demonstrated increased eosinophilic lung infiltration ( P < 0.05; n = 4) and increased markers of lung T-cell activation/memory (CD62L low, CD44 high; P < 0.01, n = 4). In vitro, Gabra4 KO CD4+ cells produced increased cytokines and exhibited increased proliferation after stimulation of the T-cell receptor as compared with WT CD4+ cells. These data suggest that the GABAAR α4-subunit plays a role in immune cell function during allergic lung sensitization. Thus GABAAR α4-subunit-specific agonists have the therapeutic potential to treat asthma via two mechanisms: direct ASM relaxation and inhibition of airway inflammation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mohamed A. ElTanbouly ◽  
Yanding Zhao ◽  
Evelien Schaafsma ◽  
Christopher M. Burns ◽  
Rodwell Mabaera ◽  
...  

In recent years, the success of immunotherapy targeting immunoregulatory receptors (immune checkpoints) in cancer have generated enthusiastic support to target these receptors in a wide range of other immune related diseases. While the overwhelming focus has been on blockade of these inhibitory pathways to augment immunity, agonistic triggering via these receptors offers the promise of dampening pathogenic inflammatory responses. V-domain Ig suppressor of T cell activation (VISTA) has emerged as an immunoregulatory receptor with constitutive expression on both the T cell and myeloid compartments, and whose agonistic targeting has proven a unique avenue relative to other checkpoint pathways to suppress pathologies mediated by the innate arm of the immune system. VISTA agonistic targeting profoundly changes the phenotype of human monocytes towards an anti-inflammatory cell state, as highlighted by striking suppression of the canonical markers CD14 and Fcγr3a (CD16), and the almost complete suppression of both the interferon I (IFN-I) and antigen presentation pathways. The insights from these very recent studies highlight the impact of VISTA agonistic targeting of myeloid cells, and its potential therapeutic implications in the settings of hyperinflammatory responses such as cytokine storms, driven by dysregulated immune responses to viral infections (with a focus on COVID-19) and autoimmune diseases. Collectively, these findings suggest that the VISTA pathway plays a conserved, non-redundant role in myeloid cell function.


2009 ◽  
Vol 1209 ◽  
Author(s):  
Keyue Shen ◽  
Michael C Milone ◽  
Michael L. Dustin ◽  
Lance Cameron Kam

AbstractT lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. 129-130
Author(s):  
V Batura ◽  
C Guo ◽  
N Warner ◽  
G Leung ◽  
A Ricciuto ◽  
...  

Abstract Background IBD is a form of chronic inflammatory disorder of the gastrointestinal tract that arises due to genetic, environmental, immunological and microbial factors. The precise pathological mechanisms remain elusive. It is thought that the onset of pediatric IBD can largely be attributed to genetics. Muise lab, at SickKids, regularly screens children at the SickKids IBD clinic and through an international consortium to find possible genetic links to the disease. We report a patient at SickKids with biallelic mutations in DOK4 who has severe Crohn’s Disease along with other inflammatory conditions. Downstream of kinase (DOK) proteins are a family of adaptor molecules that serve as scaffolding proteins important in regulating cell signaling, especially in T cells. DOK4 has been shown to have negative regulatory effects on T cell activation but is also expressed across various other tissues where its function is yet to be determined. We predict that these mutations are causing immune cell dysregulation, which may be contributing to the patients IBD. Aims Through this study, we aim to enhance our understanding of the pathobiological mechanism of novel mutations in DOK4. Methods We have established T cell lines, expressing wild type and mutated DOK4, which will be used to perform functional tests, such as localization analysis through immunofluorescence and cytokine profiling, to check for T cell function. We have patient derived organoids, which will be used to assess changes in gut morphology using imaging techniques. We will also generate mutant zebrafish model that will be used to determine the susceptibility to colitis related to this mutation, disease progression and gut peristalsis using live imaging technology. Results Preliminary data shows variation in expression of the protein within patient derived peripheral blood mononuclear cells (PBMCs) compared to a healthy donor. Conclusions With this study, we hope to identify new therapeutic targets for patients with DOK4 mutations. Funding Agencies CIHRThe Leona M. and Harry B. Helmsley Charitable Trust


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A498-A498
Author(s):  
Leah DiMascio ◽  
Dipti Thakkar ◽  
Siyu Guan ◽  
Eric Rowinsky ◽  
Jordi Rodon ◽  
...  

BackgroundV-domain Ig suppressor of T cell Activation (VISTA), an immune checkpoint regulator predominantly expressed on myeloid cells, represents a promising therapeutic target due to its role in suppressing pro-inflammatory, anti-tumor responses within the tumor microenvironment (TME). Based on VISTA’s broad expression across immune cell subtypes, HMBD-002 has been designed as a non-depleting, IgG4 monoclonal antibody with high affinity and specificity to VISTA across species (human, cynomolgus monkey, and rodent) that has the ability to block a predicted counter-structure binding site. In preclinical studies, HMBD-002 significantly inhibited tumor growth, both as a monotherapy and in combination with pembrolizumab, while decreasing infiltration of suppressive myeloid cells within the TME and increasing T cell activity. While rapid serum clearance and immune toxicities (e.g. cytokine release syndrome) have been reported for IgG1 antibodies, these were not observed preclinically with HMBD-002. In addition to VISTA expression on pro-inflammatory immune cells, examination of VISTA expression across cancer types has revealed that several malignancies, particularly human samples of triple negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC), express high levels of VISTA, thereby providing a rationale for exploring these indications in clinical studies.MethodsThis Phase 1, first in human study is being conducted in two parts and will evaluate multiple doses and schedules of intravenously (IV) administered HMBD-002, with or without pembrolizumab, in patients with advanced solid tumors. Part 1 (dose escalation) seeks to identify the maximum tolerated dose (MTD), or the maximum tested dose, of HMBD-002 as a monotherapy, and separately, in combination with pembrolizumab to define the recommend doses for subsequent disease directed studies (i.e., recommended phase 2 dose [RP2D]). Part 2 (dose expansion) will assess the anti-cancer activity of HMBD-002 as a monotherapy at the RP2D in previously treated patients with TNBC, and NSCLC, and in combination with pembrolizumab in patients with TNBC, NSCLC, and other VISTA-expressing malignancies. The size of the disease-directed cohorts will be determined based on an interim futility analysis conducted upon enrollment of 15 patients. Safety, efficacy, pharmacokinetic, and pharmacodynamic endpoints will be monitored and reported. Correlative studies will assess pre- and post-treatment markers of immune activity in the periphery and the tumor microenvironment.AcknowledgementsThis work was funded in part by the Cancer Prevention and Research Institute of Texas (CPRIT).Ethics ApprovalThe study was approved by each participating Institution’s Institutional Review Board.


2020 ◽  
Vol 8 (2) ◽  
pp. e000417 ◽  
Author(s):  
Alexandra Borodovsky ◽  
Christine M Barbon ◽  
Yanjun Wang ◽  
Minwei Ye ◽  
Laura Prickett ◽  
...  

Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape detection by the immune system. Adenosine signaling through the adenosine 2A receptor (A2AR) on immune cells elicits a range of immunosuppressive effects which promote tumor growth and limit the efficacy of immune checkpoint inhibitors. Preclinical data with A2AR inhibitors have demonstrated tumor regressions in mouse models by rescuing T cell function; however, the mechanism and role on other immune cells has not been fully elucidated.MethodsWe report here the development of a small molecule A2AR inhibitor including characterization of binding and inhibition of A2AR function with varying amounts of a stable version of adenosine. Functional activity was tested in both mouse and human T cells and dendritic cells (DCs) in in vitro assays to understand the intrinsic role on each cell type. The role of adenosine and A2AR inhibition was tested in DC differentiation assays as well as co-culture assays to access the cross-priming function of DCs. Syngeneic models were used to assess tumor growth alone and in combination with alphaprogrammed death-ligand 1 (αPD-L1). Immunophenotyping by flow cytometry was performed to examine global immune cell changes upon A2AR inhibition.ResultsWe provide the first report of AZD4635, a novel small molecule A2AR antagonist which inhibits downstream signaling and increases T cell function as well as a novel mechanism of enhancing antigen presentation by CD103+ DCs. The role of antigen presentation by DCs, particularly CD103+ DCs, is critical to drive antitumor immunity providing rational to combine a priming agent AZD4635 with check point blockade. We find adenosine impairs the maturation and antigen presentation function of CD103+ DCs. We show in multiple syngeneic mouse tumor models that treatment of AZD4635 alone and in combination with αPD-L1 led to decreased tumor volume correlating with enhanced CD103+ function and T cell response. We extend these studies into human DCs to show that adenosine promotes a tolerogenic phenotype that can be reversed with AZD4635 restoring antigen-specific T cell activation. Our results support the novel role of adenosine signaling as an intrinsic negative regulator of CD103+ DCs maturation and priming. We show that potent inhibition of A2AR with AZD4635 reduces tumor burden and enhances antitumor immunity. This unique mechanism of action in CD103+ DCs may contribute to clinical responses as AZD4635 is being evaluated in clinical trials with IMFINZI (durvalumab, αPD-L1) in patients with solid malignancies.ConclusionWe provide evidence implicating suppression of adaptive and innate immunity by adenosine as a mechanism for immune evasion by tumors. Inhibition of adenosine signaling through selective small molecule inhibition of A2AR using AZD4635 restores T cell function via an internal mechanism as well as tumor antigen cross-presentation by CD103+ DCs resulting in antitumor immunity.


2012 ◽  
Vol 93 (6) ◽  
pp. 1339-1344 ◽  
Author(s):  
William C. Adams ◽  
Ronald J. Berenson ◽  
Gunilla B. Karlsson Hedestam ◽  
André Lieber ◽  
Richard A. Koup ◽  
...  

The complement-regulatory protein CD46 is the primary receptor for human adenovirus type 35 (HAdV-35) and can regulate human immune-cell activation. CD4 + T-cells are critical for initiating and maintaining adaptive immunity elicited by infection or vaccination. It was reported previously that HAdV-35 can bind these cells and suppress their activation. The data reported here demonstrate that recombinant trimeric HAdV-35 knob proteins alone can induce CD46 receptor downregulation and inhibit interleukin-2 production and proliferation of human CD4+ T-cells in vitro similarly to mAbs specific to the CD46 region bound by HAdV-35 knobs. A mutant knob protein with increased affinity for CD46 compared with the wild-type knob caused equivalent effects. In contrast, a CD46-binding-deficient mutant knob protein did not inhibit T-cell activation. Thus, the capacity of HAdV-35 to attenuate human CD4 + T-cell activation depends predominantly on knob interactions with CD46 and can occur independently of infection.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3011-3011
Author(s):  
Michael Rahman Shafique ◽  
Terrence Lee Fisher ◽  
Elizabeth E. Evans ◽  
John E. Leonard ◽  
Desa Rae Electa Pastore ◽  
...  

3011 Background: Antibody blockade of semaphorin 4D (SEMA4D, CD100) promotes tumoral dendritic cell and CD8+ T cell infiltration and reduces function and recruitment of immunosuppressive myeloid cells. Importantly, these mechanisms to overcome immune exclusion and suppression have been shown to complement immune checkpoint therapies in preclinical models. Pepinemab is an IgG4 humanized monoclonal antibody targeting semaphorin 4D. The CLASSICAL-Lung clinical trial tests the combination of pepinemab with avelumab to couple T cell activation via checkpoint inhibition with beneficial modifications of the immune microenvironment via pepinemab. Methods: This phase 1b/2, single arm, first-in-human study is designed to evaluate the safety, tolerability and efficacy of pepinemab with avelumab in 62 patients (pts) with advanced (stage IIIB/IV) non-small cell lung cancer (NSCLC), including immunotherapy-naïve (ION) pts and pts whose tumors progressed following immunotherapy (IOF). Results: Among 21 evaluable ION pts, 5 experienced partial response (PR), 3 pts had clinical benefit ≥ 1 year, and the disease control rate (DCR) is 81%. Pts enrolled in this study were observed to have lower PD-L1 expression relative to prior single agent studies (likely due to approval of pembrolizumab for first line therapy). We, therefore, performed subgroup analysis for response by PD-L1 status. The objective tumor response (ORR) in the PD-L1 negative and low population ( < 80% TPS by Dako 73-10 assay) appears to be approximately 2-2.5 fold greater with combination therapy than with historical single agent immune checkpoint controls. Notably, 97% of pts who experienced PR or SD were reported to have tumors with negative or low PD-L1 expression. Among 29 evaluable IOF pts, the combination resulted in 59% DCR, including 2 PR and 7 patients with durable clinical benefit of ≥ 23 weeks. Biomarker analysis of pre- and on-treatment biopsies confirmed increased CD8+ T cell density correlating with response. Surprisingly, analysis of myeloid-derived suppressor cells (MDSCs) revealed a relative paucity of these cells in pretreatment NSCLC biopsies as compared to other cancer indications such as HNSCC. Conclusions: This trial is nearing completion with only 5 of 62 subjects remaining on study. Preliminary data suggest the combination is well tolerated and shows signs of increased antitumor activity, particularly in PD-L1 negative or low tumors. Updated clinical response data and immunophenotypic analyses will be presented. Clinical trial information: NCT03268057 .


Sign in / Sign up

Export Citation Format

Share Document