Effect of NKTR-214 on the number and activity of CD8+ tumor infiltrating lymphocytes in patients with advanced renal cell carcinoma.

2017 ◽  
Vol 35 (6_suppl) ◽  
pp. 454-454 ◽  
Author(s):  
Michael E. Hurwitz ◽  
Adi Diab ◽  
Chantale Bernatchez ◽  
Cara L. Haymaker ◽  
Harriet M. Kluger ◽  
...  

454 Background: Patients with low baseline CD8+ T-cells within the tumor microenvironment (TILs) have a poor response to immune checkpoint inhibitors. Agents designed to specifically activate and expand CD8+ T cells may improve clinical outcomes in patients with low TILs. NKTR-214 is a CD-122-biased agonist designed to provide sustained signaling through the heterodimeric IL-2 receptor pathway (IL-2Rβɣ) and preferentially activate and expand NK and effector CD8+ T cells over CD4+ T regulatory cells. Methods: A dose escalation, open-label, trial was initiated to assess the safety of NKTR-214 and explore immune changes in the blood and tumor microenvironment in patients with advanced solid tumors. NKTR-214 was administered IV in an outpatient setting with initial dosing at 0.003 mg/kg. Pre and post treatment blood and tumor samples were analyzed for immune phenotyping, gene expression, T cell receptor diversity, and changes in the tumor microenvironment by immunohistochemistry. Results: Among 25 patients dosed, 15 had RCC ([email protected]/kg, [email protected]/kg, and [email protected]/kg). Treatment with NKTR-214 was well tolerated and the MTD was not reached. One patient experienced DLTs (Gr3 syncope and hypotension) at 0.012 mg/kg. There were no immune-related AEs. Of 12 patients evaluable for response, 75% had SD at their first on treatment scan. Of 5 patients, who were immune checkpoint naïve with ≥ 1 prior TKI treatments, 3 experienced tumor shrinkage, 1 with PR per RECIST 1.1 (unconfirmed). Interrogation of the tumor microenvironment revealed many significant immunological changes post treatment, including increase in total and proliferating NK, CD8+, and CD4+ T cells. There was good correlation between increase in activated CD4+ and CD8+ T cells in peripheral blood with an increase in T cell infiltrates within the tumor tissue. Conclusions: NKTR-214 increased immune infiltration in the tumor and anti-tumor activity in patients who previously progressed on TKIs, with a favorable safety profile. The ability to alter the immune environment and increase PD-1 expression on effectors T cells may improve the effectiveness of anti-PD-1 blockade. A trial combining NKTR-214 and nivolumab is enrolling. Clinical trial information: 02869295.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A912-A912
Author(s):  
Yongjoon Lee ◽  
Seung Hyuck Jeon ◽  
A Yeong Park ◽  
Suyeon Jo ◽  
Jinhwa Lee ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) including anti-CTLA-4, anti-PD-1, and anti-PD-L1 have been clinically used for the treatment of various types of cancer. However, ICIs have a limited efficacy, and it is required to develop a strategy to enhance the efficacy of ICIs. Hematopoietic progenitor kinase 1 (HPK1) was recently known to inhibit T cell receptor (TCR) signaling by targeting SLP76 thus suppress T-cell effector functions.MethodsIn the present study, we examined the expression of HPK-1 and SLP76 in tumor-infiltrating lymphocytes (TILs) obtained from renal cell carcinoma tissues, in relation with the expression of PD-1 and other immune checkpoint receptors by performing flow cytometry analysis. In addition, we examined if inhibition of the kinase activity of HPK1 by CMPD0914, that is a potent, selective and orally available HPK1 inhibitor, enhanced effector functions of tumor-infiltrating CD8+ T cells in the presence of anti-PD-1 blocking antibodies.ResultsFirst, we found that HPK1 and SLP76 are expressed in both CD8+ and CD4+ T cells including Foxp3+ regulatory T cells irrespective of PD-1 expression. Intriguingly, the expression levels of HPK1 and SLP76 were significantly higher in the PD-1bright population compared to the PD-1- or PD-1dim populations. Further characterization revealed that HPK1 and SLP76 were highly expressed in CD8+ T-cell populations expressing TOX, a transcription regulator of T-cell exhaustion, or TCF-1, a transcription factor related to progenitor-like exhausted T cells. In ex vivo functional assays, anti-PD-1 treatment increased the production of IFN-γ and TNF, and the expression of a proliferation marker, Ki-67 among tumor-infiltrating CD8+ T cells. Interestingly, the effects of anti-PD-1 treatment were further enhanced by the combination treatment with CMPD0914.ConclusionsIn summary, we demonstrated that HPK1 and SLP76 are expressed by human tumor-infiltrating T cells, particularly PD-1brightCD8+ T cells, and that anti-PD-1-induced T-cell reinvigoration is significantly enhanced by an HPK1 inhibitor, CMPD0914, rationalizing the combination of anti-PD1/PD-L1 and HPK1 inhibitors for the treatment of cancer.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 178-178
Author(s):  
Hongjae Chon

178 Background: Cancer immunotherapy targeting immune checkpoints are now emerging as a promising therapeutic strategy in various tumors. However, the treatment of T cell non-inflamed tumor which lacks intratumoral T cell infiltrates are still major clinical hurdle. Therefore, drugs that target signaling pathways to increase T cell infiltration in non-inflamed tumor microenvironment (TME) should be investigated. In this study, we aimed to explore the therapeutic potential of STING agonist in murine model of non-small cell lung cancer to overcome immunotherapy resistance. Methods: C57BL/6 mice, which are 6 to 8 weeks of age, were used for the experiment. Mice were injected with Lewis lung carcinoma cells on the right flank. STING agonist (cGAMP) was injected intratumorally. CD8+ and CD31+ cells were detected using immunofluorescence (IF) staining. Gene expressions of tumor microenvironment were analyzed by NanoString RNA sequencing. Flow cytometry (FACS) was performed to detect CD8+, CD4+, Treg and myeloid cell population. Tumor growths were evaluated in combination with anti-PD1 and STING agonist treatment. Results: Local injection of STING agonist effectively delayed tumor growth of LLC. STING agonist increased intratumoral CD8+ T cells and vascular disruption. Expressions of inhibitory checkpoint molecules (PD-1, PD-L1), cytokines (IFN), CD8+ and CD4+ T cells were increased, which showed that anti-cancer immune responses were augmented. Combination treatment of anti-PD-1 antibody and STING agonist synergistically decreased tumor growth. Conclusions: In this study, STING agonist was shown to delay tumor growth and remodel tumor microenvironment in non-inflamed lung carcinoma model. Combination therapy of STING agonist and immune checkpoint inhibitors (ICI) targeting PD-1 synergistically suppressed the growth of lung cancer which is resistant to ICI monotherapy. Collectively, our findings demonstrated that localized STING therapy effectively sensitizes non-inflamed lung cancer to systemic ICI treatment and induces a maximal anti-cancer immune response.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bas Weenink ◽  
Kaspar Draaisma ◽  
Han Z. Ooi ◽  
Johan M. Kros ◽  
Peter A. E. Sillevis Smitt ◽  
...  

Abstract In multiple tumor types, prediction of response to immune therapies relates to the presence, distribution and activation state of tumor infiltrating lymphocytes (TILs). Although such therapies are, to date, unsuccessful in gliomas, little is known on the immune contexture of TILs in these tumors. We assessed whether low and high-grade glioma (LGG and HGG, grade II and IV respectively) differ with respect to number, location and tumor reactivity of TILs; as well as expression of molecules involved in the trafficking and activation of T cells. Intra-tumoral CD8 T cells were quantified by flow cytometry (LGG: n = 12; HGG: n = 8) and immunofluorescence (LGG: n = 28; HGG: n = 28). Neoantigen load and expression of Cancer Germline Antigens (CGAs) were assessed using whole exome sequencing and RNA-seq. TIL-derived DNA was sequenced and the variable domain of the TCRβ chain was classified according to IMGT nomenclature. QPCR was used to determine expression of T cell-related genes. CD8 T cell numbers were significantly lower in LGG and, in contrast to HGG, mainly remained in close vicinity to blood vessels. This was accompanied by lower expression of chemo-attractants CXCL9, CXCL10 and adhesion molecule ICAM1. We did not observe a difference in the number of expressed neoantigens or CGAs, nor in diversity of TCR-Vβ gene usage. In summary, LGG have lower numbers of intra-tumoral CD8 T cells compared to HGG, potentially linked to decreased T cell trafficking. We have found no evidence for distinct tumor reactivity of T cells in either tumor type. The near absence of TILs in LGG suggest that, at present, checkpoint inhibitors are unlikely to have clinical efficacy in this tumor type.


2021 ◽  
Author(s):  
Molly Thomas ◽  
Kamil Slowikowski ◽  
Kasidet Manakongtreecheep ◽  
Pritha Sen ◽  
Jessica Tantivit ◽  
...  

Therapeutic blockade of co-inhibitory immune receptors PD-1 and CTLA-4 has revolutionized oncology, but treatments are limited by immune-related adverse events (IRAEs). IRAE Colitis (irColitis) is the most common, severe IRAE affecting up to 25% of patients on dual PD-1 and CTLA-4 inhibition. Here, we present a systems biology approach to define the cell populations and transcriptional programs driving irColitis. We collected paired colon mucosal biopsy and blood specimens from 13 patients with irColitis, 8 healthy individuals, and 8 controls on immune checkpoint inhibitors (ICIs), and analyzed them with single-cell/nuclei RNA sequencing with paired TCR and BCR sequencing, multispectral fluorescence microscopy, and secreted factor analysis (Luminex). We profiled 299,407 cells from tissue and blood and identified 105 cell subsets that revealed significant tissue remodeling in active disease. Colon mucosal immune populations were dominated by tissue-resident memory (Trm) ITGAE-expressing CD8 T cells representing a phenotypic spectrum defined by gene programs associated with T cell activation, cytotoxicity, cycling, and exhaustion. CD8 Trm and effector CD4 T cells upregulated type 17 immune programs (IL17A, IL26) and Tfh-like programs (CXCL13, PDCD1). We also identified for the first time an increased abundance of two KLRG1 and ITGB2-expressing CD8 T cell populations with circulatory cell markers, including a GZMK Trm-like population and a CX3CR1 population that is predicted to be intravascular. These two populations were more abundant in irColitis patients treated with dual PD-1/CTLA-4 inhibition than those receiving anti-PD-1 monotherapy. They also had significant TCR sharing with PBMCs, suggesting a circulatory origin. In irColitis we observed significant epithelial turnover marked by fewer LGR5-expressing stem cells, more transit amplifying cells, and upregulation of apoptotic and DNA-sensing programs such as the cGAS-STING pathway. Mature epithelial cells with top crypt genes upregulated interferon-stimulated pathways, CD274 (PD-L1), anti-microbial genes, and MHC-class II genes, and downregulated aquaporin and solute-carrier gene families, likely contributing to epithelial cell damage and absorptive dysfunction. Mesenchymal remodeling was defined by increased endothelial cells, both in irColitis patients and specifically in patients on dual PD-1/CTLA-4 blockade. Cell-cell communication analysis identified putative receptor-ligand pairs that recruit CD8 T cells from blood to inflamed endothelium and positive feedback loops such as the CXCR3 chemokine system that retain cells in tissue. This study highlights the cellular and molecular drivers underlying irColitis and provides new insights into the role of CTLA-4 and PD-1 signaling in maintaining CD8 Trm homeostasis, regulating CD8 T recruitment from blood, and promoting epithelial-immune crosstalk critical to gastrointestinal immune tolerance and intestinal barrier function.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2766-2766
Author(s):  
Robert Orlowski ◽  
Alexander Huang ◽  
Mercy Gohil ◽  
James Mangan ◽  
Marissa Vignali ◽  
...  

Abstract BACKGROUND: Immune checkpoint blockadewith anti-PD-1/PD-L1 therapyhas demonstrated remarkable efficacy in multiple tumor types. Biomarker candidates for predicting likelihood of response to targeted immunotherapy are being actively investigated including inhibitory or activating receptors on CD8+ lymphocytes, corresponding ligands on tumor or antigen-presenting cells (APCs), T-cell functionality, and the T-cell receptor (TCR) repertoire found within a tumor microenvironment. Myelofibrosis (MF) and Chronic Myeloid Leukemia (CML) are tumors responsive to immunotherapy, most notably allogeneic transplantation (alloSCT), and donor lymphocyte infusion. Although tyrosine kinase inhibitors can improve patient outcomes, a potentially curative therapeutic option other than alloSCT is needed. PURPOSE: To determine the immune profile of the bone marrow tumor microenvironment in patients with CML and MF compared to healthy donors in order to assess the rationale and potential efficacy of novel immune checkpoint therapies. METHODS: Cryopreserved bone marrow aspirate mononuclear cells (MNCs) from healthy donors (HDs) (n=11), untreated CML (n=9) or MF (n= 12) were analyzed by flow cytometry. CD3+ CD8+ lymphocytes were divided into naïve, central memory (CM), effector memory (EM), and terminal effector (TEMRA) subsets for analysis. Expression of immune checkpoint receptors including PD-1, 4-1BB, TIM3, LAG3, and TIGIT were evaluated on each population. Known corresponding ligands including PD-L1 and PD-L2 were assessed in CML samples on blasts, plasmacytoid dendritic cells (pDCs), myeloid dendritic cells (mDCs), and monocytes. T-cell function was evaluated by cytokine production, cytotoxicity, and proliferation in CD3+ CD8+ PD1+ or PD1- populations. To assess the TCR repertoire found within the tumor microenvironment, non-naive CD8+ T-cells were sorted into PD-1+ and PD-1- populations, and then CDR3 region of the TCRB gene, together with sufficient flanking sequence to identify most V, D, and J genes was sequenced using the immunoSEQ platform from Adaptive Biotechnologies. RESULTS: There was a significant difference in the CML CD3+ CD8+ subset distribution compared to HDs with EM% increased at 60.01% vs. 41.25% (p =0.0137), and TEMRA 44.51% vs. 20.64% (p=0.0004). CM% trended downwards (32.15% to 21.58%, p=0.118) while naïve% was equivalent in CML and HDs (22.13% vs. 20.87%). The percentage of PD-1+ non-naïve CD8+ T-cells (EM, TEMRA, CM combined) was significantly increased in CML samples at 55.14% (range 31-69%) compared to HDs at 38.98% (range 34.8% to 55.5%; p=0.0050). PD-1 expression was consistently increased across all subgroups in CML (CM: 67.06% vs 53.22%, EM: 60.01% vs. 41.25%, TEMRA: 44.51% vs 20.64% p <0.05 for all). There was no statistically significant difference in CML compared to HDs for secondary receptors including TIGIT, TIM3, LAG3, or 4-1BB. Fewer than 5% of CML blasts were positive for the PD-L1 or PD-L2 ligands, however PD-L1 expression was increased on mDCs compared to HD samples (53.08% vs 24.63%; p=0.0015). In contrast to these findings in CML there was no significant proportional difference in CD8+ subsets, PD-1 status, or other receptors between MF and HDs. Anti-CD3/28 stimulation did not induce differential IFN-γ/TNF-alpha production, granzyme production, or proliferation (Ki67+) among the CD8+ PD-1+ or PD-1- T-cells from CML samples. To begin to estimate T cell clonality in the bone marrow tumor microenvironment, TCRβ sequencing of sorted non-naïve CD8- T-cells showed several clones markedly overrepresented in the diseased PD-1+ compartment. Conclusions: The CML tumor microenvironment is enriched in CD8+ T-cells expressing the inhibitory receptor PD-1 while APC subsets express increased PD-L1. This represents a potential axis of tumor driven immunosuppression amenable to immune checkpoint blockade. This is in contrast to MF, where the immunoprofile was not detectably different from healthy donors. These findings may reflect differences in tumor immunogenicity, cytokine mileu, or the APC types present. In-vivo testing using murine models for both diseases is underway to gain a better understanding of the role of immune checkpoint therapies. Disclosures Mangan: Incyte Corporation: Membership on an entity's Board of Directors or advisory committees. Vignali:Adaptive Biotechnologies: Employment, Equity Ownership. Emerson:Adaptive Biotechnologies: Employment, Equity Ownership. Robins:Adaptive Biotechnologies: Consultancy, Equity Ownership, Patents & Royalties. Yusko:Adaptive Biotechnologies: Employment, Equity Ownership.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A672-A672
Author(s):  
Sruthi Ravindranathan ◽  
Tenzin Passang Fnu ◽  
Edmund Waller

BackgroundOnly a fraction of cancer patients responds to current antibody-based immune checkpoint inhibitors.1 Our lab has identified vasoactive intestinal peptide-receptor (VIP-R) signaling as a targetable immune checkpoint pathway in cancer. VIP is a small neuropeptide with known immunosuppressive effects on T cells, in particular, CD4+ T cells.2–5 However, little is known about VIP-R signaling in CD8+ T cells. To define mechanisms by which VIP limits T cell activation and function, we studied the regulation of VIP and VIP receptors (VIP-R) in T cells following their activation in vitro and in mouse models of cancer.MethodsT cells from healthy human donors and murine splenocytes were activated using anti-CD3 coated plates. Western blots measured intracellular pre-pro-VIP, along with its cognate receptors; VPAC1 and VPAC2. Purified cultures of CD4+ and CD8+ T cells were used to interrogate the protein expression on specific T cell subsets. Activation and chemokine receptor expression was assessed by flow cytometry to evaluate T cell response to VIP-R antagonists in vitro and in tumor-bearing mice engrafted with pancreatic cancer cell lines.ResultsBoth murine and human T cells upregulate pre-pro-VIP following TCR stimulation with similar kinetics of VIP receptors between species. VIP expression is upregulated in vivo following treatment of tumor-bearing mice with anti-PD1 MoAb. VIP expression is temporally correlated with the upregulation of other co-inhibitory molecules. VPAC1 expression modestly increased in activated T cells while VPAC2 expression decreased. A non-canonical high molecular weight (HMW) form of VPAC2-related protein robustly and transiently increase in activated T cells. Expression of HMW form of VPAC2 is only detected in activated CD4+ T cells. Of note, activated CD4+ but not CD8+ T cells upregulate pre-pro-VIP. Pharmacological inhibition of VIP-R signaling significantly increased CD69+, OX40+, Lag3+, and PD1+ expression in CD4+ subsets compared to activated T cells without VIP-R antagonists (p < 0.05). In contrast, CD8+ T cells upregulate VPAC1 but not VPAC2 receptor following activation. VIP-R antagonist treatment of activated CD8+ T cells significantly decreased CXCR4+ expression (p < 0.05). CXCR3 and CXCR5 expression were not affected by VIP-R antagonist treatment.ConclusionsVIP-R signaling is a novel immune autocrine and paracrine checkpoint pathway in activated CD4+ T cells. Activated CD4+ and CD8+ T cells demonstrate different kinetics of VPAC1 and VPAC2 expression, suggesting different immune-regulatory responses to VIP-R antagonists. Understanding VIP-R signaling induced during T cell activation can lead to specific drugs that target VIP-R pathways to enhance cancer immunotherapy.AcknowledgementsWe thank healthy volunteers for blood samples. The authors also thank the shared resources at Emory University, namely, Emory Flow Cytometry Core (EFCC) and Integrated Cellular Imaging Core (ICI) and Yerkes Nonhuman Primate Genomics Core that provided services or instruments at subsidized cost to conduct some of the reported experiments. This work was supported in part by Katz Foundation funding, Georgia Research Alliance, and Emory School of Medicine Dean's Imagine, Innovate and Impact (I3) venture award to Edmund K. Waller.ReferencesDarvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Experimental and Molecular Medicine 2018.Wang HY, Jiang XM, Ganea D. The Neuropeptides VIP and PACAP Inhibit IL-2 Transcription by Decreasing c-Jun and Increasing JunB Expression in T Cells. J Neuroimmunol 2000;104(1):68–78.Delgado M. Vasoactive intestinal peptide generates CD4+CD25+ regulatory T Cells in Vivo. J Leukoc Biol 2005.Anderson P, Gonzalez-Rey E. Vasoactive intestinal peptide induces cell cycle arrest and regulatory functions in human T cells at multiple levels. Mol Cell Biol 2010.Delgado M, Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids. NIH Public Access July 2013, 25–39.Ethics ApprovalDe-identified blood samples from consented healthy volunteers (IRB 00046063) were obtained with approval from Institutional Review Boards.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 6060-6060
Author(s):  
Amanda Psyrri ◽  
Niki Gavrielatou ◽  
Aris Spathis ◽  
Maria Anastasiou ◽  
Ekaterina Fortis ◽  
...  

6060 Background: Tumor immune cell compositions determine response to immunotherapy. For a better understanding of the mechanisms of resistance to nivolumab in HNSCC, we sought to investigate a prospective cohort of longitudinal HNSCC samples from recurrent/metastatic HNSCC pts treated with nivolumab and identify biomarkers of response and resistance. We will specifically focus on modulation of immune markers following two cycles of nivolumab. Methods: Patients with platinum-refractory HNSCC with no contraindication to nivolumab therapy are included in this study. Tumor biopsies are performed at baseline, 24-72 hours after the second cycle and at progression with appropriate written informed consent. Samples were assessed for the presence of Tertiary Lymphoid Structures (TLS), PD-L1 expression (TPS and CPS) and CD8 T cell infiltrates combined with Ki67 (CD8/Ki67 double IHC stain). The primary outcome measure of the study is change in the percentage of immune cells in post treatment compared to baseline biopsies. Secondary endpoints include safety of performing a second biopsy, best overall response rate, biomarker expression in association with response and survival. Evaluation of other biomarkers including tumor mutational burden, HLA class I and II expression and adaptive immunity cell populations using multiplex IF is ongoing. Results: Of 20 patients evaluable for response, 14 had PD (8 of whom showed hyper-progression) and 6 attained disease control (1 with PR). PD-L1 status (CPS or TPS) was not altered by treatment (p = 0.905) and CPS > 20 pre-treatment showed a favorable trend towards response (p = 0.117). Absence of tertiary lymphoid structures was associated with disease progression (p = 0.0374). Infiltrating plasma cell count remained unchanged pre- and post-treatment and was unrelated to response (p = 0.458). The percentage of proliferating CD8+ T cells (CD8+/Ki67+) increased in post-treatment biopsies in the entire population (p = 0.022) and especially in progressors (p = 0.039). Pre-treatment CD8+ T cell density was higher in patients with hyper-progression compared to progressors (p = 0.029). Conclusions: Increased percentage of proliferating CD8+ T cells in progressors might represent dysfunctional T cells as has been recently shown in melanoma pts (Li H et al Cell 2019) and clinical efforts to reactivate intratumoral T cells may augment the efficacy of PD1 checkpoint inhibitors. Clinical trial information: NCT03652142.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A831-A831
Author(s):  
Tienan Wang ◽  
Qing Lin ◽  
Jie Zhang

BackgroundCancer immunotherapies, including immune checkpoint inhibitors, CAR-T, cancer vaccines and bispecific antibodies, have been brought to spot light in recent years as several therapeutic strategies targeting the immune system have produced exciting clinical results. Bispecific antibody typically play dual roles in blocking the immune checkpoint and redirecting/re-boosting the function of the immune effector cells. Blinatumomab belongs to CD3 bispecific T cell engager (CD3 BiTE), which was engineered to harbor two arms binding with CD3 and CD19 simultaneously and direct CD8+ T cells to specifically recognize CD19 positive lymphoma cells to execute cytotoxicity. Approval of Blinatumomab for patients with relapse/refractory B cell acute lymphoblastic leukemia (ALL) has driven remarkable increase in combination studies of Blinatumomab with other immunotherapies such as checkpoint inhibitors.MethodsIn this study, we developed CD8+ T cytotoxic system targeting different B lymphoma cell line and fully validated the function of Blinatumomab in promoting target tumor cell lysis by primary CD8+ T cells (figure 1). In addition, we established a mixed lymphocyte and tumor system to mimic physiological TME to dissect the combinational role of Nivolumab and Blinatumomab (figure 2).ResultsThe result suggest that combinatory therapy is highly depend on the dosage of Blinatumomab and also T cell number in the TME, which might give an instruction for ongoing clinical trial design. Finally, we have employed humanized mouse models bearing Raji or Daudi tumor cells to further validate this combination treatment in vivo. Both In-vivo and In-vitro data support that Blinatumomab is dominant in activing T cell and Nivolumab can only exhibit synergistic effect under suboptimal dosage of Blinatumomab.Abstract 781 Figure 1Establishment of In vitro co-culture system for CD3 BiTEestablish in vitro human PBMC based system to validate CD3 BiTE functionAbstract 781 Figure 2Opdivo and CD3 BiTE CombinationOpdivo could further promote T cell activation under the treatment of CD3 BiTEConclusionsSuccessfully establish in vitro system to evaluate the function of CD3 BiTE and also take advantage of MLR/tumor co-culture system to demonstrate PD1 antibody could further promote T cell activation under appropriate dosage of CD3 BiTE.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


2021 ◽  
Vol 22 (10) ◽  
pp. 5207
Author(s):  
Chi Yan ◽  
Jinming Yang ◽  
Nabil Saleh ◽  
Sheau-Chiann Chen ◽  
Gregory D. Ayers ◽  
...  

Objectives: Inhibition of the PI3K/mTOR pathway suppresses breast cancer (BC) growth, enhances anti-tumor immune responses, and works synergistically with immune checkpoint inhibitors (ICI). The objective here was to identify a subclass of PI3K inhibitors that, when combined with paclitaxel, is effective in enhancing response to ICI. Methods: C57BL/6 mice were orthotopically implanted with syngeneic luminal/triple-negative-like PyMT cells exhibiting high endogenous PI3K activity. Tumor growth in response to treatment with anti-PD-1 + anti-CTLA-4 (ICI), paclitaxel (PTX), and either the PI3Kα-specific inhibitor alpelisib, the pan-PI3K inhibitor copanlisib, or the broad spectrum PI3K/mTOR inhibitor gedatolisib was evaluated in reference to monotherapy or combinations of these therapies. Effects of these therapeutics on intratumoral immune populations were determined by multicolor FACS. Results: Treatment with alpelisib + PTX inhibited PyMT tumor growth and increased tumor-infiltrating granulocytes but did not significantly affect the number of tumor-infiltrating CD8+ T cells and did not synergize with ICI. Copanlisib + PTX + ICI significantly inhibited PyMT growth and increased activation of intratumoral CD8+ T cells as compared to ICI alone, yet did not inhibit tumor growth more than ICI alone. In contrast, gedatolisib + ICI resulted in significantly greater inhibition of tumor growth compared to ICI alone and induced durable dendritic-cell, CD8+ T-cell, and NK-cell responses. Adding PTX to this regimen yielded complete regression in 60% of tumors. Conclusion: PI3K/mTOR inhibition plus PTX heightens response to ICI and may provide a viable therapeutic approach for treatment of metastatic BC.


Sign in / Sign up

Export Citation Format

Share Document