scholarly journals Low-grade glioma harbors few CD8 T cells, which is accompanied by decreased expression of chemo-attractants, not immunogenic antigens

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bas Weenink ◽  
Kaspar Draaisma ◽  
Han Z. Ooi ◽  
Johan M. Kros ◽  
Peter A. E. Sillevis Smitt ◽  
...  

Abstract In multiple tumor types, prediction of response to immune therapies relates to the presence, distribution and activation state of tumor infiltrating lymphocytes (TILs). Although such therapies are, to date, unsuccessful in gliomas, little is known on the immune contexture of TILs in these tumors. We assessed whether low and high-grade glioma (LGG and HGG, grade II and IV respectively) differ with respect to number, location and tumor reactivity of TILs; as well as expression of molecules involved in the trafficking and activation of T cells. Intra-tumoral CD8 T cells were quantified by flow cytometry (LGG: n = 12; HGG: n = 8) and immunofluorescence (LGG: n = 28; HGG: n = 28). Neoantigen load and expression of Cancer Germline Antigens (CGAs) were assessed using whole exome sequencing and RNA-seq. TIL-derived DNA was sequenced and the variable domain of the TCRβ chain was classified according to IMGT nomenclature. QPCR was used to determine expression of T cell-related genes. CD8 T cell numbers were significantly lower in LGG and, in contrast to HGG, mainly remained in close vicinity to blood vessels. This was accompanied by lower expression of chemo-attractants CXCL9, CXCL10 and adhesion molecule ICAM1. We did not observe a difference in the number of expressed neoantigens or CGAs, nor in diversity of TCR-Vβ gene usage. In summary, LGG have lower numbers of intra-tumoral CD8 T cells compared to HGG, potentially linked to decreased T cell trafficking. We have found no evidence for distinct tumor reactivity of T cells in either tumor type. The near absence of TILs in LGG suggest that, at present, checkpoint inhibitors are unlikely to have clinical efficacy in this tumor type.

2017 ◽  
Vol 35 (6_suppl) ◽  
pp. 454-454 ◽  
Author(s):  
Michael E. Hurwitz ◽  
Adi Diab ◽  
Chantale Bernatchez ◽  
Cara L. Haymaker ◽  
Harriet M. Kluger ◽  
...  

454 Background: Patients with low baseline CD8+ T-cells within the tumor microenvironment (TILs) have a poor response to immune checkpoint inhibitors. Agents designed to specifically activate and expand CD8+ T cells may improve clinical outcomes in patients with low TILs. NKTR-214 is a CD-122-biased agonist designed to provide sustained signaling through the heterodimeric IL-2 receptor pathway (IL-2Rβɣ) and preferentially activate and expand NK and effector CD8+ T cells over CD4+ T regulatory cells. Methods: A dose escalation, open-label, trial was initiated to assess the safety of NKTR-214 and explore immune changes in the blood and tumor microenvironment in patients with advanced solid tumors. NKTR-214 was administered IV in an outpatient setting with initial dosing at 0.003 mg/kg. Pre and post treatment blood and tumor samples were analyzed for immune phenotyping, gene expression, T cell receptor diversity, and changes in the tumor microenvironment by immunohistochemistry. Results: Among 25 patients dosed, 15 had RCC ([email protected]/kg, [email protected]/kg, and [email protected]/kg). Treatment with NKTR-214 was well tolerated and the MTD was not reached. One patient experienced DLTs (Gr3 syncope and hypotension) at 0.012 mg/kg. There were no immune-related AEs. Of 12 patients evaluable for response, 75% had SD at their first on treatment scan. Of 5 patients, who were immune checkpoint naïve with ≥ 1 prior TKI treatments, 3 experienced tumor shrinkage, 1 with PR per RECIST 1.1 (unconfirmed). Interrogation of the tumor microenvironment revealed many significant immunological changes post treatment, including increase in total and proliferating NK, CD8+, and CD4+ T cells. There was good correlation between increase in activated CD4+ and CD8+ T cells in peripheral blood with an increase in T cell infiltrates within the tumor tissue. Conclusions: NKTR-214 increased immune infiltration in the tumor and anti-tumor activity in patients who previously progressed on TKIs, with a favorable safety profile. The ability to alter the immune environment and increase PD-1 expression on effectors T cells may improve the effectiveness of anti-PD-1 blockade. A trial combining NKTR-214 and nivolumab is enrolling. Clinical trial information: 02869295.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi123
Author(s):  
Christina Jackson ◽  
John Choi ◽  
JiaJia Zhang ◽  
Anna Piotrowski ◽  
Tobias Walbert ◽  
...  

Abstract BACKGROUND Immune checkpoint inhibitors (ICIs) are not uniformly effective in glioblastoma treatment. Immunogenomic determinants may identify patients who are most likely to benefit from these therapies. Therefore, we compared the immunogenomic phenotype of a responder to combination anti-LAG-3 and anti-PD-1 therapy to non-responders. METHODS We performed T cell receptor (TCR) sequencing and gene expression analysis on pre-treatment, post-chemoradiation, and post-immunotherapy tumor specimens of glioblastoma patients treated with anti-LAG3 in combination with anti-PD-1 after first recurrence (NCT02658981, ongoing). We evaluated T cell clonotypes and immunophenotype of serially collected peripheral blood mononuclear cells (PBMCs) during treatment using multi-parametric flow cytometry. RESULTS To date, six patients have been enrolled in the initial anti-LAG-3 and anti-PD-1 cohort. One patient demonstrated complete response, one had stable disease, and four had progressive disease by radiographic evaluation. The responder demonstrated substantially higher TCR clonality in the resected tumor at initial diagnosis compared to non-responders (mean 0.028 vs. 0.005). Shared tumor infiltrating clonotypes with pre-immunotherapy PBMCs exhibited an increase in frequency from initial resection (6.8%) to resection at recurrence (20%). The responder’s tumor at initial resection exhibited increased gene signatures of PD1low CD8+ T cells, chemokine signaling, and interferon gamma pathways. On PBMC phenotypic analysis, the responder demonstrated significantly higher percentages of CD137+ CD8+T cells (median 8.38% vs 3.24%, p=0.02) and lower percentages of Foxp3+CD137+ CD4+T cells compared to non-responders (median 18.5% vs. 38.5%, p=0.006). Interestingly, dynamic analysis of PBMCs showed that the responder demonstrated a lower percentage of PD1+ CD8+ T cells pre-immunotherapy (median 2.5% vs.12.4%, p=0.002), with persistent decrease over the course of treatment while non-responders showed no consistent pattern. CONCLUSION Our preliminary results demonstrate significant differences in tumor and peripheral blood immunogenomic characteristics between responder and non-responders to anti-LAG3 and anti-PD-1 therapy. These immunogenomic characteristics may help stratify patients’ response to combination ICIs.


2010 ◽  
Vol 207 (8) ◽  
pp. 1791-1804 ◽  
Author(s):  
Elizabeth D. Thompson ◽  
Hilda L. Enriquez ◽  
Yang-Xin Fu ◽  
Victor H. Engelhard

Studies of T cell responses to tumors have focused on the draining lymph node (LN) as the site of activation. We examined the tumor mass as a potential site of activation after adoptive transfer of naive tumor-specific CD8 T cells. Activated CD8 T cells were present in tumors within 24 h of adoptive transfer and proliferation of these cells was also evident 4–5 d later in mice treated with FTY720 to prevent infiltration of cells activated in LNs. To confirm that activation of these T cells occurred in the tumor and not the tumor-draining LNs, we used mice lacking LNs. Activated and proliferating tumor-infiltrating lymphocytes were evident in these mice 24 h and 4 d after naive cell transfer. T cells activated within tumors acquired effector function that was evident both ex vivo and in vivo. Both cross-presenting antigen presenting cells within the tumor and tumor cells directly presenting antigen activated these functional CD8 effectors. We conclude that tumors support the infiltration, activation, and effector differentiation of naive CD8 T cells, despite the presence of immunosuppressive mechanisms. Thus, targeting of T cell activation to tumors may present a tool in the development of cancer immunotherapy.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 591-591 ◽  
Author(s):  
Samuel Haywood ◽  
Roy Chen ◽  
Paul Pavicic ◽  
Lin Lin ◽  
C. Marcela Diaz-Montero ◽  
...  

591 Background: The effect of VEGF inhibitors such as sunitinib to modulate RCC tumor microenvironment and the effect on immunotherapy using checkpoint inhibitors is unknown and of clinical interest. Methods: Immune infiltrate in tissue sections from clear cell renal cell carcinomas (ccRCC) (n = 13) treated with sunitinib in the neoadjuvant setting were compared to that of untreated RCC patients with localized disease (n = 15). Immune infiltrate was scored in H&E stained tissue sections. Infiltrates were further characterized by IHC using antibodies against CD4 (Novocastra NCL-CD4-1F6 clone 1F6), CD8 (BiogeneX MU422-UC clone 1A5) or PD1 (Abcam ab52587 clone EPR4877). Intensity of staining was quantified using a Leica microscope equipped with a Retiga SRV camera. Scanned images of multiple tumor fields were analyzed using ImagePro Plus software. For pre-clinical studies, Balb/c mice bearing Renca tumors (RCC) were treated with sunitinib (40mg/kg) daily for 14 days, and tumors were dissociated and analyzed for CD8 and CD4 infiltrate by FACS analysis. Results: Qualitative analysis showed a more prominent accumulation of lymphocytes in tumor sections of patients receiving sunitinib. Quantitative analysis of these infiltrates revealed higher levels of CD8+ T cells in sunitinib treated patients (p = 0.04). By contrast, sunitinib treatment was associated with a reduction of intratumoral expression of PD1. Preclinical studies in the Renca model also showed an increase in the frequency of tumor infiltrating CD8+ T cells following sunitinib treatment. Remarkably, a higher fraction of these tumor infiltrating CD8 T cells were found to co-express the activation marker of cytotoxic effector cells (CD107a) when compared to untreated mice. Conclusions: These findings suggest that sunitinib not only promotes the accumulation of CD8+ T cells within the tumors, but also affects their activity by modulating PD1 expression and enhancing cytotoxic function.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 9091-9091
Author(s):  
Deborah Jean Lee Wong ◽  
Jeffrey Gary Schneider ◽  
Raid Aljumaily ◽  
Wolfgang Michael Korn ◽  
Jeffrey R. Infante ◽  
...  

9091 Background: Although IL-10 has anti-inflammatory properties, it stimulates cytotoxicity and proliferation of intratumoral antigen activated CD8+ T cell at higher concentrations. AM0010 is anticipated to activate antigen stimulated, intratumoral CD8 T cells while PD-1 inhibits them, providing the rationale for combining AM0010 and anti-PD-1 antibody. Methods: We treated a cohort of 34 NSCLC pts with AM0010 (10-20mg/kg QD, SC) and a PD-1 inhibitor [pembrolizumab (2mg/kg, q3wk IV; n=5) or nivolumab (3mg/kg, q2wk IV; n=29)]. Tumor responses were assessed by irRC every 8 weeks. Immune responses were measured by analysis of serum cytokines (Luminex), activation of blood derived T cells (FACS) and peripheral T cell clonality (TCR sequencing). Tumor PD-L1 expression was confirmed by IHC (22C3). Results: Pts had a median of 2 prior therapies. Median follow-up is 9.6 mo (range 0.5-77.3) in this fully enrolled cohort. AM0010 plus anti-PD-1 was well-tolerated. TrAEs were reversible and transient, with most being low grade, most commonly fatigue and pyrexia. G3/4 TrAEs were thrombocytopenia (7), anemia (6), fatigue (4), rash (3), pyrexia (2), hypertriglyceridemia (1) and pneumonitis (1). As of Jan. 31 2017, 22 pts had at least 1 tumor assessment. Partial responses (PRs) were observed in 8 pts (36.4%). 17 of these 22 pts had tissue for analysis of percent of tumor cells with PD-L1 expression (22C3): 58.8% had <1%, 17.7% had 1-49% and 23.5% had >50%. Best response data stratified for PD-L1 are shown in the table. Median PFS and OS for the entire cohort have not been reached. Updated outcome data that includes all enrolled pts will be available at the meeting. AM0010 plus anti-PD1 increased serum Th1 cytokines (IL-18, IFNγ), the number and proliferation of PD1+ Lag3+ activated CD8+ T cells and a de-novo oligoclonal expansion of T cell clones in the blood while decreasing TGFβ. Conclusions: AM0010 in combination with anti-PD1 is well-tolerated in advanced NSCLC pts. The efficacy and the observed CD8+ T cell activation is promising. Clinical trial information: NCT02009449. [Table: see text]


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi104-vi104
Author(s):  
Elizabeth Ogando-Rivas ◽  
Paul Castillo ◽  
Noah Jones ◽  
Vrunda Trivedi ◽  
Jeffrey Drake ◽  
...  

Abstract BACKGROUND Adoptive T-cell therapies have been successfully used as treatment for patients diagnosed with advanced cancers. Unfortunately, for some refractory cancers, they have failed. To overcome this, checkpoint inhibitors have shown to rescue immune anti-tumor responses. We hypothesized that in-vitro checkpoint blockade during T-cell stimulation and expansion with RNA-pulsed dendritic cells may enhance the activity of antigen-specific T-cells and improve the efficacy of ACT platforms. METHODS Human PBMCs were isolated from CMV seropositive donors to generate DCs and pulsed them with CMVpp65-mRNA to educate T-cells in co-culture for 15-days. We targeted pp65 antigen which is ubiquitously expressed by glioblastoma cells. Three checkpoint blockade conditions were evaluated (anti-PD1, anti-Tim3 and anti-PD1+Tim3). IL2 was added every 3 days as well as the blockade antibodies. Immunephenotyping was performed on Day-0 and Day-15. Polyfunctional antigen specific responses were evaluated upon rechallenge with CMVpp65 peptides. RESULTS CMVpp65 activated CD8+ T-cells upregulate Lag3 and Tim3 (p= &lt; 0.0001). Tim3 blockade alone or in combination led to a significant upregulation of Lag3 expression on CD8+pp65Tetramer+ central memory, effector memory, and TEMRA T-cells. This latter T-cell subset uniquely maintain double-positive Tim3/Lag3 expression after blockade. In contrast, PD-1 blockade had minimal effects on Tim3 or Lag3 expression. In addition, IFN-g secretion was reduced in T-cells treated with Tim3 blockade in a dose-dependent manner (p= 0.004). CONCLUSION In this study, we have identified a potential activating component of Tim3 and linkage between Tim3 and Lag3 signaling upon blocking Tim3 axis during T-cell antigen presenting cell interactions that should be considered when targeting immune checkpoints for clinical use.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A912-A912
Author(s):  
Yongjoon Lee ◽  
Seung Hyuck Jeon ◽  
A Yeong Park ◽  
Suyeon Jo ◽  
Jinhwa Lee ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) including anti-CTLA-4, anti-PD-1, and anti-PD-L1 have been clinically used for the treatment of various types of cancer. However, ICIs have a limited efficacy, and it is required to develop a strategy to enhance the efficacy of ICIs. Hematopoietic progenitor kinase 1 (HPK1) was recently known to inhibit T cell receptor (TCR) signaling by targeting SLP76 thus suppress T-cell effector functions.MethodsIn the present study, we examined the expression of HPK-1 and SLP76 in tumor-infiltrating lymphocytes (TILs) obtained from renal cell carcinoma tissues, in relation with the expression of PD-1 and other immune checkpoint receptors by performing flow cytometry analysis. In addition, we examined if inhibition of the kinase activity of HPK1 by CMPD0914, that is a potent, selective and orally available HPK1 inhibitor, enhanced effector functions of tumor-infiltrating CD8+ T cells in the presence of anti-PD-1 blocking antibodies.ResultsFirst, we found that HPK1 and SLP76 are expressed in both CD8+ and CD4+ T cells including Foxp3+ regulatory T cells irrespective of PD-1 expression. Intriguingly, the expression levels of HPK1 and SLP76 were significantly higher in the PD-1bright population compared to the PD-1- or PD-1dim populations. Further characterization revealed that HPK1 and SLP76 were highly expressed in CD8+ T-cell populations expressing TOX, a transcription regulator of T-cell exhaustion, or TCF-1, a transcription factor related to progenitor-like exhausted T cells. In ex vivo functional assays, anti-PD-1 treatment increased the production of IFN-γ and TNF, and the expression of a proliferation marker, Ki-67 among tumor-infiltrating CD8+ T cells. Interestingly, the effects of anti-PD-1 treatment were further enhanced by the combination treatment with CMPD0914.ConclusionsIn summary, we demonstrated that HPK1 and SLP76 are expressed by human tumor-infiltrating T cells, particularly PD-1brightCD8+ T cells, and that anti-PD-1-induced T-cell reinvigoration is significantly enhanced by an HPK1 inhibitor, CMPD0914, rationalizing the combination of anti-PD1/PD-L1 and HPK1 inhibitors for the treatment of cancer.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 746-746
Author(s):  
Jose F Camargo ◽  
Eric Wieder ◽  
Erik Kimble ◽  
Cara Benjamin ◽  
Despina Kolonias ◽  
...  

Abstract CMV is the most clinically significant viral infection in HCT recipients. Control CMV reactivation after HCT is highly dependent on CMV-specific T cells. Despite dramatic technical advances, the clinical utility of functional assays of virus-specific T cells to predict CMV reactivation following HCT remains to be established. Using 13-color flow cytometry, we studied CD8+T cell responses to pp65 and IE-1 CMV peptide stimulation in cryopreserved PBMC from three clinically distinct subgroups (n=10 each) of HCT patients: 1) Elite Controllers (EC) : CMV seropositive (R+) recipients who never reactivated CMV based on weekly surveillance testing; 2) Spontaneous Controllers (SC): CMV R+ recipients who spontaneously resolved low-grade viremia (&lt;200 IU/mL) without antiviral therapy; and 3) Non-controllers (NC): CMV R+ recipients who experienced high-grade CMV viremia (&gt;1,000 IU/mL) requiring antiviral therapy. NC had lower numbers of CD8+ T cells that simultaneously produced 3-4 cytokines in response to CMV peptides compared to EC and SC (18, 26 and 34%, respectively) suggesting that progressive CMV viremia is associated with loss of CD8+ T cell polyfunctionality. Among 15 possible cytokine signatures, we identified two CMV-specific CD8+ T cell cytokine signatures, measured at day +30, that were strongly associated with the risk of CMV reactivation (Fig. 1): i) the non-protective signature (NPS) consisting of IL-2negIFNγposTNFαnegMIP-1βpos CD8+ T cells was positively associated with CMV reactivation (4.9% of CMV-specific CD8+ T cells vs. 19.4 P=0.002 for EC vs. SC/NC; 4.9 vs. 10.8 P=0.02 for EC vs. SC; 4.9 vs. 22.8 P=0.005 for EC vs. NC for pp65 stimulated cells; similar trends were observed in IE-1 stimulated cells); ii) the protective signature (PS) consisted of quadruple producers (IL-2posIFNγposTNFαposMIP-1βpos), and was significantly reduced among NC vs. SC following pp65 and IE-1 stimulation (0.05% of CMV-specific CD8+ T cells vs. 2.85 for pp65, P= 0.02; 0 vs. 1.25 for IE-1, P= 0.02); this association was also found in superantigen-stimulated cells. Production of IFNγ alone or in combination did not predict reactivation (P=0.49). Since NC trended toward more frequent recurrence of CMV viremia compared to SC (60 vs. 10%, respectively; P=0.06), we explored the association between PS and NPS and number of episodes of CMV reactivation (Fig. 1). We observed a significant stepwise increase in the levels of the NPS in pp65-stimulated cells in patients who experienced 0 vs. 1 and ≥2 episodes of CMV reactivation (4.9, 18.3 P=0.002, and 22.4 P=0.06). In addition, patients with ≥2 episodes of CMV had the lowest levels of the PS across groups (0 vs. 2.2% for ≥2 vs. 1 episode P=0.02). Similar trends were observed in IE-1 stimulated cells. Whereas T-cell depletion, aGVHD, lymphoid malignancy and CMV donor serostatus were not associated with risk of CMV in this small cohort, a NPS &gt;10% was associated with increased risk of CMV reactivation (OR: 21, CI95 2-215; P=0.01) and need for treatment (OR: 14, CI95 1.5-137; P=0.02); and a PS &gt;2% was associated with trend toward reduced risk of need for treatment (OR: 0.1, CI95 0.01-1.05; P=0.06). Multivariable modeling was not performed due to sample size. Time to event curves showed that high levels of NPS (&gt;10%) predicted risk of CMV reactivation (log-rank P=0.0002). This remained true in analyses restricted to patients with CMV reactivation after day 30 (log-rank P=0.01). High levels of NPS or low levels of PS (&lt;2%) predicted risk of need for treatment (log-rank P=0.003 and P=0.04, respectively). Combination of the PSlow/NPShigh had the highest predictive value for risk of need for treatment (log-rank P &lt;0.0001; fig. 2). 18 graft products were available. As expected CMV-specific responses were not detected in grafts from CMV seronegative donors. Among the 9 CMV seropositive grafts, NPS expression was null across groups suggesting that the NPS is an immune phenotype that is absent in healthy donors; there was a stepwise decrease in the number of quadruple producer CD8+ T cells in CMV seropositive grafts for EC, SC and NC: 3.4 (n=3), 2 (n=4) and 0 (n=2), respectively, suggesting that donor PS might influence recipient reactivation. In conclusion, we have identified two novel CMV-specific CD8+ T cell cytokine signatures with robust predictive value for risk of CMV reactivation and need for treatment. These biomarkers might be useful in guiding clinical decision making in HCT recipients. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document