Evaluation of ICD codes and phecodes for the identification of pancreatic cancer in a large genomic database.

2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 642-642
Author(s):  
Chelsea Anne Isom ◽  
Eric R. Gamazon ◽  
Marcus Chuan Beng Tan

642 Background: Large genomic databases linked to electronic health records promise to shed light on molecular mechanisms underlying rare diseases, such as pancreatic cancer. However, accurately identifying patients with the desired phenotype can be challenging. This is particularly the case for pancreatic tumors, since ICD codes do not distinguish between pancreatic adenocarcinoma (PDAC) and pancreatic neuroendocrine tumors (pNET). Previous studies have shown that ICD codes aggregated by phenotype, known as “phecodes”, have a higher accuracy in identifying specific phenotypes than ICD codes themselves; however, their performance in identifying cancers of the pancreas has not been studied. Methods: From a large deidentified genomic database, two queries were performed to identify all adults with pancreatic cancer for a GWAS study, one using ICD-9/10 codes and the other using phecodes. The medical records for all patients identified from both queries were then reviewed to confirm the presence and histologic type of pancreatic cancer. Results: Of the 91,985 genotyped adults in the database, ICD-9/10 codes identified 1,247 patients with pancreatic cancer, compared with only 422 patients identified by the phecode query. All patients in the phecode cohort were also found in the ICD cohort. Of the 1,247 patients in the ICD cohort, 760 were confirmed to have pancreatic cancer on review of the health records (594 with PDAC, 166 with pNET) whereas in the phecode cohort, only 251 were confirmed to have pancreatic cancer (159 with PDAC, 92 pNET). The positive predictive value (PPV) for PDAC in the ICD query was 47%, compared with 38% for the phecode cohort. The ICD and phecode cohorts had similarly low numbers of pre-malignant cystic tumors (5% in each cohort) and other periampullary cancers (3%). Conclusions: In this large genomic database, the use of ICD-9/10 codes for pancreatic cancer was able to identify nearly three times as many patients with pancreatic cancer and had a higher PPV compared to using phecodes. Therefore, ICD codes, rather than phecodes, should be used to identify patients with pancreatic cancer for subsequent genotyping analysis, though caution is required because the PPV is still low.

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1872 ◽  
Author(s):  
Li-Lian Gan ◽  
Ling-Wei Hii ◽  
Shew-Fung Wong ◽  
Chee-Onn Leong ◽  
Chun-Wai Mai

Pancreatic cancer ranks high among the causes of cancer-related mortality. The prognosis of this grim condition has not improved significantly over the past 50 years, despite advancement in imaging techniques, cancer genetics and treatment modalities. Due to the relative difficulty in the early detection of pancreatic tumors, as low as 20% of patients are eligible for potentially curative surgery; moreover, chemotherapy and radiotherapy (RT) do not confer a great benefit in the overall survival of the patients. Currently, emerging developments in immunotherapy have yet to bring a significant clinical advantage among pancreatic cancer patients. In fact, pancreatic tumor-driven immune evasion possesses one of the greatest challenges leading to immunotherapeutic resistance. Most of the immune escape pathways are innate, while poor priming of hosts’ immune response and immunoediting constitute the adaptive immunosuppressive machinery. In this review, we extensively discuss the pathway perturbations undermining the anti-tumor immunity specific to pancreatic cancer. We also explore feasible up-and-coming therapeutic strategies that may restore immunity and address therapeutic resistance, bringing hope to eliminate the status quo in pancreatic cancer prognosis.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5661
Author(s):  
Sharavan Ramachandran ◽  
Itishree S. Kaushik ◽  
Sanjay K. Srivastava

Pancreatic tumors exhibit high basal autophagy compared to that of other cancers. Several studies including those from our laboratory reported that enhanced autophagy leads to apoptosis in cancer cells. In this study, we evaluated the autophagy and apoptosis inducing effects of Pimavanserin tartrate (PVT). Autophagic effects of PVT were determined by Acridine Orange assay and Transmission Electron Microscopy analysis. Clinical significance of ULK1 in normal and pancreatic cancer patients was evaluated by R2 and GEPIA cancer genomic databases. Modulation of proteins in autophagy signaling was assessed by Western blotting and Immunofluorescence. Apoptotic effects of PVT was evaluated by Annexin-V/APC assay. Subcutaneous xenograft pancreatic tumor model was used to evaluate the autophagy-mediated apoptotic effects of PVT in vivo. Autophagy was induced upon PVT treatment in pancreatic ducal adenocarcinoma (PDAC) cells. Pancreatic cancer patients exhibit reduced levels of autophagy initiator gene, ULK1, which correlated with reduced patient survival. Interestingly, PVT induced the expression of autophagy markers ULK1, FIP200, Atg101, Beclin-1, Atg5, LC3A/B, and cleavage of caspase-3, an indicator of apoptosis in several PDAC cells. ULK1 agonist LYN-1604 enhanced the autophagic and apoptotic effects of PVT. On the other hand, autophagy inhibitors chloroquine and bafilomycin blocked the autophagic and apoptotic effects of PVT in PDAC cells. Notably, chloroquine abrogated the growth suppressive effects of PVT by 25% in BxPC3 tumor xenografts in nude mice. Collectively, our results indicate that PVT mediated pancreatic tumor growth suppression was associated with induction of autophagy mediated apoptosis.


Pathobiology ◽  
2021 ◽  
pp. 1-9
Author(s):  
Shusaku Kurogi ◽  
Naoki Hijiya ◽  
Shinya Hidano ◽  
Seiya Sato ◽  
Tomohisa Uchida ◽  
...  

<b><i>Background:</i></b> Progression of pancreatic intraepithelial neoplasia (PanIN) to invasive carcinoma is a critical factor impacting the prognosis of patients with pancreatic tumors. However, the molecular mechanisms involved are not fully understood. We have reported that the process frequently involves loss of chromosome 8p, causing downregulation of DUSP4, thus conferring invasive ability on cancer cells. Here, we focus on ZNF395, whose expression was also found to be decreased by 8p loss and was predicted to be a growth suppressor gene. <b><i>Methods:</i></b> Pancreatic cancer cell lines inducibly expressing ZNF395 were established to assess the functional significance of ZNF395 in pancreatic carcinogenesis. Immunohistochemistry was also performed to analyze the expression levels of ZNF395 in pancreatic cancer tissues. <b><i>Results:</i></b> Induction of ZNF395 in pancreatic cancer cells resulted in marked activation of JNK and suppression of their proliferation through a delay in cell cycle progression. Immunohistochemistry revealed that ZNF395 was expressed ubiquitously in both normal pancreatic ducts and PanINs but was significantly reduced in invasive cancers, especially those showing poor differentiation. <b><i>Conclusion:</i></b> ZNF395 acts as a novel tumor suppressor gene. Its downregulation caused by 8p loss in intraepithelial cells accelerates their proliferation through dysregulation of the cell cycle, leading to progression to invasive cancer.


2020 ◽  
Author(s):  
Tao Liu ◽  
Bin Zhang ◽  
xin jin ◽  
Xiang Cheng

Abstract BackgroundPancreatic cancer is a highly heterogeneous and has a poor prognosis. Elucidating the molecular mechanisms underlying pancreatic cancer progression is essential for improving patient survival. Although the E3 ubiquitin ligase mind bomb 1 (MIB1) is involved in cancer cell proliferation and is often overexpressed in pancreatic cancer, the role of MIB1 in pancreatic cancer progression remains unclear.Methods The relationship of MIB1 with the clinicopathological features of pancreatic tumors was bioinformatically investigated in different datasets. The protein levels of MIB1 and ST7 were assessed by Western blotting and immunohistochemistry. The role of MIB1 and ST7 in pancreatic cancer growth was assessed by MTS assays, colony formation assays, and experiments in mouse xenograft models. The interaction between MIB1 and ST7 was investigated by co-immunoprecipitation. The relationship between MIB1, ST7, and IQGAP1 levels was explored by Western blotting and quantitative real-time PCR.ResultsMIB1 expression was elevated in pancreatic cancer tissues, and its expression levels were associated with unfavorable prognosis. MIB1 overexpression enhanced pancreatic cancer proliferation and invasion in vitro and in vivo. We identified ST7 as a novel MIB1 target for proteasomal degradation. Further, we found that ST7 suppressed tumor growth by downregulating IQGAP1 in pancreatic cancer cells.ConclusionsThese data suggest that MIB1 promotes pancreatic cancer progression by inducing ST7 degradation. ST7 suppresses tumor growth by downregulating IQGAP1 in pancreatic cancer cells. Therefore, the MIB1/ST7/IQGAP1 axis is essential for pancreatic cancer progression, and MIB1 inhibition may improve the survival of pancreatic cancer patients.


2020 ◽  
Vol 14 ◽  
Author(s):  
Subhajit Makar ◽  
Abhrajyoti Ghosh ◽  
Divya ◽  
Shalini Shivhare ◽  
Ashok Kumar ◽  
...  

: Despite advances in the development of cytotoxic and targeted therapies, pancreatic adenocarcinoma (PAC) remains a significant cause of cancer mortality worldwide. It is also difficult to detect it at an early stage due to numbers of factors. Most of the patients are present with locally advanced or metastatic disease, which precludes curative resection. In the absence of effective screening methods, considerable efforts have been made to identify better systemic treatments during the past decade. This review describes the recent advances in molecular mechanisms involved in pancreatic cancer initiation, progression, and metastasis. Additionally, the importance of deregulated cellular signalling pathways and various cellular proteins as potential targets for developing novel therapeutic strategies against incurable forms of pancreatic cancer is reported. The emphasis is on the critical functions associated with growth factors and their receptors viz. c-MET/HGF, CTHRC1, TGF-β, JAK-STAT, cyclooxygenase pathway, WNT, CCK, MAPK-RAS-RAF, PI3K-AKT, Notch, src, IGF-1R, CDK2NA and chromatin regulation for the sustained growth, survival, and metastasis of pancreatic cancer cells. It also includes various therapeutic strategies viz. immunotherapy, surgical therapy, radiation therapy and chemotherapy.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 238
Author(s):  
Yasutaka Ishii ◽  
Masahiro Serikawa ◽  
Tomofumi Tsuboi ◽  
Ryota Kawamura ◽  
Ken Tsushima ◽  
...  

Pancreatic cancer has the poorest prognosis among all cancers, and early diagnosis is essential for improving the prognosis. Along with radiologic modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), endoscopic modalities play an important role in the diagnosis of pancreatic cancer. This review evaluates the roles of two of those modalities, endoscopic ultrasonography (EUS) and endoscopic retrograde cholangiopancreatography (ERCP), in the diagnosis of pancreatic cancer. EUS can detect pancreatic cancer with higher sensitivity and has excellent sensitivity for the diagnosis of small pancreatic cancer that cannot be detected by other imaging modalities. EUS may be useful for the surveillance of pancreatic cancer in high-risk individuals. Contrast-enhanced EUS and EUS elastography are also useful for differentiating solid pancreatic tumors. In addition, EUS-guided fine needle aspiration shows excellent sensitivity and specificity, even for small pancreatic cancer, and is an essential examination method for the definitive pathological diagnosis and treatment decision strategy. On the other hand, ERCP is invasive and performed less frequently for the purpose of diagnosing pancreatic cancer. However, ERCP is essential in cases that require evaluation of pancreatic duct stricture that may be early pancreatic cancer or those that require differentiation from focal autoimmune pancreatitis.


2021 ◽  
Vol 22 (2) ◽  
pp. 803
Author(s):  
Giuseppina Emanuela Grieco ◽  
Noemi Brusco ◽  
Giada Licata ◽  
Daniela Fignani ◽  
Caterina Formichi ◽  
...  

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3040
Author(s):  
Zainab Hussain ◽  
Jeremy Nigri ◽  
Richard Tomasini

Deciphering the interactions between tumor and stromal cells is a growing field of research to improve pancreatic cancer-associated therapies and patients’ care. Indeed, while accounting for 50 to 90% of the tumor mass, many pieces of evidence reported that beyond their structural role, the non-tumoral cells composing the intra-tumoral microenvironment influence tumor cells’ proliferation, metabolism, cell death and resistance to therapies, among others. Simultaneously, tumor cells can influence non-tumoral neighboring or distant cells in order to shape a tumor-supportive and immunosuppressive environment as well as influencing the formation of metastatic niches. Among intercellular modes of communication, extracellular vesicles can simultaneously transfer the largest variety of signals and were recently reported as key effectors of cell–cell communication in pancreatic cancer, from its development to its evolution as well as its ability to resist available treatments. This review focuses on extracellular vesicles-mediated communication between different cellular components of pancreatic tumors, from the modulation of cellular activities and abilities to their biological and physiological relevance. Taking into consideration the intra-tumoral microenvironment and its extracellular-mediated crosstalk as main drivers of pancreatic cancer development should open up new therapeutic windows.


Sign in / Sign up

Export Citation Format

Share Document