Practical Applications of Concrete-Polymer Composites

2020 ◽  
pp. 187-194
Author(s):  
Ohama Yoshihiko
2020 ◽  
pp. 325-327
Author(s):  
Sumesh K R ◽  
Kanthavel K ◽  
Saikrishnan G

The applications of natural fiber composites have enormously increased due to the high availability, eco-friendly nature and practical applications of the composites. In this review different fiber combinations using natural fiber and synthetic fibers have been investigated and found with interesting results. The hybrid nature of fiber reinforcement adds to the mechanical properties of polymer-based composites. The hybridization using more than one fiber reduces the surface deformations in the polymer matrix and enhanced the bonding ability of polymer composites. The alkali treatment was the effective surface treatment process for improving the cellulosic nature with good crystalline nature, good bonding ability with the polymer matrix, this adds to the properties of polymer-based composites. The crystallinity index of 43-68 % were observed in surface treated natural fibers.


Biotribology ◽  
2021 ◽  
pp. 123-145
Author(s):  
J. A. Sánchez-Fernández ◽  
Rodrigo Cué-Sampedro ◽  
Domingo Ricardo Flores-Hernandez

2019 ◽  
Vol 3 (2) ◽  
pp. 85-97
Author(s):  
Vitaliy G. Shevchenko ◽  
Polina M. Nedorezova ◽  
Alexander N. Ozerin

Background:The paper describes the types and electrical properties of polymer nanocomposites containing carbon allotropes.Objective:Direct current conductivity, conduction in percolation systems, conduction mechanisms and factors controlling conductivity and percolation parameters are considered.Method:The dielectric properties of polymer nanocomposites are presented, and experimental methods and methods for analyzing the results have also been described. An analysis of the data on ac electrical conductivity, including the contribution of nanofiller - interfacial polarization is presented. Special consideration is given to the role of nanocarbons as dielectric probes.Results:The microwave properties of polymer nanocomposites, their use to estimate the distribution of nanofiller in the matrix, as well as practical applications for shielding and absorption of electromagnetic radiation have been analyzed.Conclusion:The use of carbon allotropes nanoparticles as fillers with high electrical conductivity provides polymer composites with useful electrical properties, including the ability to absorb highfrequency electromagnetic radiation.


2012 ◽  
Vol 24 (31) ◽  
pp. 314205 ◽  
Author(s):  
Xuebin Wang ◽  
Amir Pakdel ◽  
Chunyi Zhi ◽  
Kentaro Watanabe ◽  
Takashi Sekiguchi ◽  
...  

Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Author(s):  
T. Imura ◽  
S. Maruse ◽  
K. Mihama ◽  
M. Iseki ◽  
M. Hibino ◽  
...  

Ultra high voltage STEM has many inherent technical advantages over CTEM. These advantages include better signal detectability and signal processing capability. It is hoped that it will explore some new applications which were previously not possible. Conventional STEM (including CTEM with STEM attachment), however, has been unable to provide these inherent advantages due to insufficient performance and engineering problems. Recently we have developed a new 1250 kV STEM and completed installation at Nagoya University in Japan. It has been designed to break through conventional engineering limitations and bring about theoretical advantage in practical applications.In the design of this instrument, we exercised maximum care in providing a stable electron probe. A high voltage generator and an accelerator are housed in two separate pressure vessels and they are connected with a high voltage resistor cable.(Fig. 1) This design minimized induction generated from the high voltage generator, which is a high frequency Cockcroft-Walton type, being transmitted to the electron probe.


Author(s):  
Bradley L. Thiel ◽  
Chan Han R. P. ◽  
Kurosky L. C. Hutter ◽  
I. A. Aksay ◽  
Mehmet Sarikaya

The identification of extraneous phases is important in understanding of high Tc superconducting oxides. The spectroscopic techniques commonly used in determining the origin of superconductivity (such as RAMAN, XPS, AES, and EXAFS) are surface-sensitive. Hence a grain boundary phase several nanometers thick could produce irrelevant spectroscopic results and cause erroneous conclusions. The intergranular phases present a major technological consideration for practical applications. In this communication we report the identification of a Cu2O grain boundary phase which forms during the sintering of YBa2Cu3O7-x (1:2:3 compound).Samples are prepared using a mixture of Y2O3. CuO, and BaO2 powders dispersed in ethanol for complete mixing. The pellets pressed at 20,000 psi are heated to 950°C at a rate of 5°C per min, held for 1 hr, and cooled at 1°C per min to room temperature. The samples show a Tc of 91K with a transition width of 2K. In order to prevent damage, a low temperature stage is used in milling to prepare thin foils which are then observed, using a liquid nitrogen holder, in a Philips 430T at 300 kV.


Author(s):  
Michael T. Postek

The term ultimate resolution or resolving power is the very best performance that can be obtained from a scanning electron microscope (SEM) given the optimum instrumental conditions and sample. However, as it relates to SEM users, the conventional definitions of this figure are ambiguous. The numbers quoted for the resolution of an instrument are not only theoretically derived, but are also verified through the direct measurement of images on micrographs. However, the samples commonly used for this purpose are specifically optimized for the measurement of instrument resolution and are most often not typical of the sample used in practical applications.SEM RESOLUTION. Some instruments resolve better than others either due to engineering design or other reasons. There is no definitively accurate definition of how to quantify instrument resolution and its measurement in the SEM.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Sign in / Sign up

Export Citation Format

Share Document