Urban Water Economics—Asset Management

2021 ◽  
pp. 419-474
Author(s):  
Mohammad Karamouz
Water ◽  
2017 ◽  
Vol 9 (2) ◽  
pp. 68 ◽  
Author(s):  
Franz Tscheikner-Gratl ◽  
Patrick Egger ◽  
Wolfgang Rauch ◽  
Manfred Kleidorfer

The decisions taken in rehabilitation planning for the urban water networks will have a long lasting impact on the functionality and quality of future services provided by urban infrastructure. These decisions can be assisted by different approaches ranging from linear depreciation for estimating the economic value of the network over using a deterioration model to assess the probability of failure or the technical service life to sophisticated multi-criteria decision support systems. Subsequently, the aim of this paper is to compare five available multi-criteria decision-making (MCDM) methods (ELECTRE, AHP, WSM, TOPSIS, and PROMETHEE) for the application in an integrated rehabilitation management scheme for a real world case study and analyze them with respect to their suitability to be used in integrated asset management of water systems. The results of the different methods are not equal. This occurs because the chosen score scales, weights and the resulting distributions of the scores within the criteria do not have the same impact on all the methods. Independently of the method used, the decision maker must be familiar with its strengths but also weaknesses. Therefore, in some cases, it would be rational to use one of the simplest methods. However, to check for consistency and increase the reliability of the results, the application of several methods is encouraged.


2019 ◽  
Vol 9 (1) ◽  
pp. 459-467
Author(s):  
Bruno Ferreira ◽  
Nelson J. G. Carriço

AbstractThe current paper aims the application of the Portuguese infrastructure asset management (IAM) methodology to a case study. The inevitable degradation of urban water infrastructures creates new challenges for water utilities engineers and manager, as they need to decide which components should be rehabilitated to efficiently match the public’s demand, while still providing a qualitative and efficient service that doesn’t compromise the financial integrity of water utilities.This methodology is based on a five-step structured sequence - (i) definition of objectives assessment criteria and metrics; (ii) diagnosis; (iii) plan production; (iv) plan implementation; and (v) monitoring and revision – being structured in three distinct levels of planning and decision (i.e., strategic, tactical and operational). The IAM methodology was applied to a sixty-year-old water supply system (WSS) located in Lisbon’s metropolitan area, Portugal, mainly focused on steps (i) to (iii) and to the tactical level of planning. Results obtained are discussed and the main conclusions are presented.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2956
Author(s):  
Alberto Campisano ◽  
Enrico Creaco

This Editorial presents a representative collection of 15 papers, presented in the Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs), and frames them in the current research trends. The most analyzed systems in the Special Issue are the Water Distribution Systems (WDSs), with the following four topics explored: asset management, modelling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the Urban Drainage Systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modelling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modelling of an urban river with a complex cross-section.


2016 ◽  
Vol 74 (7) ◽  
pp. 1518-1526 ◽  
Author(s):  
M. A. Cardoso ◽  
A. Poças ◽  
M. S. Silva ◽  
R. Ribeiro ◽  
M. C. Almeida ◽  
...  

The requirement to provide urban water services continuously while infrastructures are ageing, imposes the need for increasingly sustainable infrastructure asset management (IAM). To achieve and maintain adequate levels of service, the AWARE-P IAM methodology has been applied in collaborative projects launched by the National Civil Engineering Laboratory, in partnership with IST (Technical University of Lisbon), Addition (software company) and several water utilities. The objective of these projects is to support urban water utilities in the development, implementation and maintenance of IAM plans. To guarantee the success of IAM planning, following the AWARE-P IAM methodology, utilities are required to: consider that the infrastructure has system behaviour and lifespan is indefinite and guarantee the full-alignment of IAM planning with organisation objectives. By analysing the strategic and tactical plans of participating utilities, the proposed methodology principles are discussed and supported. The main innovation results from the implementation of IAM planning are also presented and discussed, including the challenges of setting up an IAM process, together with the major benefits and drawbacks that come up when developing IAM plans. The results were demonstrated by the effective implementation of 16 strategic and 14 tactical IAM plans by the participating utilities.


2017 ◽  
Vol 7 (5) ◽  
pp. 506-517 ◽  
Author(s):  
Hamed Zamenian ◽  
Juyeong Choi ◽  
Seyed Amir Sadeghi ◽  
Nader Naderpajouh

Purpose The purpose of this paper is to develop a systemic approach to evaluate physical condition of water pipeline infrastructure with limited condition assessment data that can help asset managers prioritize capital investments in maintenance projects for urban water pipeline systems. Design/methodology/approach Spatial pattern analyses are conducted in this research to find the spatial pattern of the service life of pipelines. Based on the spatial relationship, the critical areas where groups of pipelines with short service life are likely to be found were located using spatial statistical analyses. A visualized platform was also developed and used to validate the implementation of the proposed approach with the case study of urban water pipeline infrastructure in a city in the Midwest region of the USA. Findings The results of the spatial pattern analyses reveal that water pipelines are spatially clustered based on their service life. Further, it was found that on average the pipelines in the center of a city have longer service life while the average expected service life of the pipelines in the marginal areas is shorter. The interpolation method produced raster data with continuous information about the service years of pipelines that are useful for asset maintenance planning. Originality/value With the limited data, the proposed approach enables identification of the critical area of water pipelines with the likelihood of shorter service life. This result can be used as a priority rule for a rehabilitation plan and contributes to shifting from a responsive to a preventive approach in underground asset management.


Author(s):  
E. Okwori ◽  
Y. Pericault ◽  
R. Ugarelli ◽  
M. Viklander ◽  
A. Hedström

Abstract Analytical tools used in infrastructure asset management of urban water pipe networks are reliant on asset data. Traditionally, data required by analytical tools has not been collected by most water utilities because it has not been needed. The data that is collected might be characterised by low availability, integrity and consistency. A process is required to support water utilities in assessing the accuracy and completeness of their current data management approach and defining improvement pathways in relation to their objectives. This study proposes a framework to enable increased data-driven asset management in pipe networks. The theoretical basis of the framework was a literature review of data management for pipe network asset management and its link to the coherence of set objectives. A survey to identify the current state of data management practice and challenges of asset management implementation in five Swedish water utilities and three focus group workshops with the same utilities was carried out. The main findings of this research were that the quality of pipe network datasets and lack of interoperability between asset management tools was a driver for creating data silos between asset management levels, which may hinder the implementation of data-driven asset management. Furthermore, these findings formed the basis for the proposed conceptual framework. The suggested framework aims to support the selection, development and adoption of improvement pathways to enable increased data-driven asset management in municipal pipe networks. Results from a preliminary application of the proposed framework are also presented.


2010 ◽  
Vol 62 (9) ◽  
pp. 2051-2058 ◽  
Author(s):  
Helena Alegre

Urban water infrastructures provide essential services to modern societies and represent a major portion of the value of municipal physical assets. Managing these assets rationally is therefore fundamental for the sustainability of the services and to the economy of societies. “Asset Management” (AM) is a modern term for an old practice—assets have always been managed. In recent years, significant evolution occurred in terms of the AM formal approaches, of the monitoring and decision support tools and of the implementation success cases. However, most tools developed are too sophisticated and data seek for small utilities. The European R&D network COST Action C18 ( www.costc18.org) identified key research problems related to the management of urban water infrastructures, currently not covered by on-going projects of the European Framework Program. The top 1 topic is “Efficient management of small community”. This paper addresses challenges and opportunities for small and medium utilities with regard to infrastructure AM (IAM). To put this into context, the first sections discuss the need for IAM, highlight key recent developments, and present IAM drivers, as well as research and development gaps, priorities and products needed.


Water Policy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 934-944 ◽  
Author(s):  
Hyeongsik Kang

Abstract Most Korean citizens today have access to water services, owing to the enormous investment made in water infrastructure. Recently, however, Korean society is facing issues concerning rapid deterioration and inappropriate management of urban water infrastructure. It has been determined that 72.3% of all water infrastructure will have deteriorated by 2035, which implies that the standard of water services then would be even lower than the current standard. Given the complex institutional system required for urban water infrastructure, the vagueness of management authority, limited maintenance budget, poor information management, and issues with maintenance methods are the high priority issues currently being faced. This paper discusses the challenges that Korean society is facing and proposes the need for a change in cognizance for successful water infrastructure management in the future.


Sign in / Sign up

Export Citation Format

Share Document